Sydney N Newsom, Duen-Shian Wang, Saadi Rostami, Isabelle Schuster, Hari Priya Parameshwaran, Yadin G Joseph, Peter Z Qin, Jin Liu, Rakhi Rajan
{"title":"Differential Divalent Metal Binding by SpyCas9's RuvC Active Site Contributes to Nonspecific DNA Cleavage.","authors":"Sydney N Newsom, Duen-Shian Wang, Saadi Rostami, Isabelle Schuster, Hari Priya Parameshwaran, Yadin G Joseph, Peter Z Qin, Jin Liu, Rakhi Rajan","doi":"10.1089/crispr.2023.0022","DOIUrl":null,"url":null,"abstract":"<p><p>To protect against mobile genetic elements (MGEs), some bacteria and archaea have clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) adaptive immune systems. CRISPR RNAs (crRNAs) bound to Cas nucleases hybridize to MGEs based on sequence complementarity to guide the nucleases to cleave the MGEs. This programmable DNA cleavage has been harnessed for gene editing. Safety concerns include off-target and guide RNA (gRNA)-free DNA cleavages, both of which are observed in the Cas nuclease commonly used for gene editing, <i>Streptococcus pyogenes</i> Cas9 (SpyCas9). We developed a SpyCas9 variant (SpyCas9<sup>H982A</sup>) devoid of gRNA-free DNA cleavage activity that is more selective for on-target cleavage. The H982A substitution in the metal-dependent RuvC active site reduces Mn<sup>2+</sup>-dependent gRNA-free DNA cleavage by ∼167-fold. Mechanistic molecular dynamics analysis shows that Mn<sup>2+</sup>, but not Mg<sup>2+</sup>, produces a gRNA-free DNA cleavage competent state that is disrupted by the H982A substitution. Our study demonstrates the feasibility of modulating cation:protein interactions to engineer safer gene editing tools.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 6","pages":"527-542"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2023.0022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
To protect against mobile genetic elements (MGEs), some bacteria and archaea have clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) adaptive immune systems. CRISPR RNAs (crRNAs) bound to Cas nucleases hybridize to MGEs based on sequence complementarity to guide the nucleases to cleave the MGEs. This programmable DNA cleavage has been harnessed for gene editing. Safety concerns include off-target and guide RNA (gRNA)-free DNA cleavages, both of which are observed in the Cas nuclease commonly used for gene editing, Streptococcus pyogenes Cas9 (SpyCas9). We developed a SpyCas9 variant (SpyCas9H982A) devoid of gRNA-free DNA cleavage activity that is more selective for on-target cleavage. The H982A substitution in the metal-dependent RuvC active site reduces Mn2+-dependent gRNA-free DNA cleavage by ∼167-fold. Mechanistic molecular dynamics analysis shows that Mn2+, but not Mg2+, produces a gRNA-free DNA cleavage competent state that is disrupted by the H982A substitution. Our study demonstrates the feasibility of modulating cation:protein interactions to engineer safer gene editing tools.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.