Multivariable Regression Model to Estimate Tidal Volume for Different Respiratory Patterns.

Daniel Romero Perez, Jordi Sola Soler, Leon Balchin, Arantxa Mas Serra, Manuel Lujan Torne, Melinda R Popoviciu Koborzan, Beatriz F Giraldo
{"title":"Multivariable Regression Model to Estimate Tidal Volume for Different Respiratory Patterns.","authors":"Daniel Romero Perez, Jordi Sola Soler, Leon Balchin, Arantxa Mas Serra, Manuel Lujan Torne, Melinda R Popoviciu Koborzan, Beatriz F Giraldo","doi":"10.1109/EMBC40787.2023.10340591","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory patterns present great variability, both in healthy subjects and in patients with different diseases and forms of nasal, oral, superficial or deep breathing. The analysis of this variability depends, among others, on the device used to record the signals that describe these patterns. In this study, we propose multivariable regression models to estimate tidal volume (V<sub>T</sub>) considering different breathing patterns. Twenty-three healthy volunteers underwent continuous multisensor recordings considering different modes of breathing. Respiratory flow and volume signals were recorded with a pneumotachograph and thoracic and abdominal respiratory inductive plethysmographic bands. Several respiratory parameters were extracted from the volume signals, such as inspiratory and expiratory areas (Area<sub>ins</sub>, Area<sub>exp</sub>), maximum volume relative to the cycle start and end (VT<sub>ins</sub>, VT<sub>exp</sub>), inspiratory and expiratory time (T<sub>ins</sub>, T<sub>exp</sub>), cycle duration (T<sub>tot</sub>), and normalized parameters of clinical interest. The parameters with the greatest individual predictive power were combined using multivariable models to estimate V<sub>T</sub>. Their performance were quantified in terms of determination coefficient (R<sup>2</sup>), relative error (E<sub>R</sub>) and interquartile range (IQR). Using only three parameters, the results obtained for the thoracic band (VT<sub>exp</sub>, T<sub>tot</sub>, Area<sub>exp</sub>) were better than those obtained from the abdominal band (VT<sub>exp</sub>, T<sub>ins</sub>, Area<sub>ins</sub>) with R<sup>2</sup> = 0.94 (IQR: 0.07); E<sub>R</sub> = 6.99 (IQR: 6.12) vs R<sup>2</sup> = 0.91 (IQR: 0.09), E<sub>R</sub> = 8.70 (IQR: 4.62). Overall performance increased to R<sup>2</sup> = 0.97 (IQR: 0.02) and E<sub>R</sub> = 4.60 (IQR: 3.68) when parameters from the different bands were combined, further improving when was applied to segments with different inspiration-expiration patterns. In particular, the nose-nose E<sub>R</sub> = 1.39 (IQR: 0.73), nose-mouth E<sub>R</sub> = 2.11 (IQR: 1.23) and mouth-mouth E<sub>R</sub> = 2.29 (IQR: 1.44) patterns showed the best results compared to those obtained for basal, shallow and deep breathing.Clinical relevance- Respiratory pattern variability can be described using multivariable regression model for tidal volume.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory patterns present great variability, both in healthy subjects and in patients with different diseases and forms of nasal, oral, superficial or deep breathing. The analysis of this variability depends, among others, on the device used to record the signals that describe these patterns. In this study, we propose multivariable regression models to estimate tidal volume (VT) considering different breathing patterns. Twenty-three healthy volunteers underwent continuous multisensor recordings considering different modes of breathing. Respiratory flow and volume signals were recorded with a pneumotachograph and thoracic and abdominal respiratory inductive plethysmographic bands. Several respiratory parameters were extracted from the volume signals, such as inspiratory and expiratory areas (Areains, Areaexp), maximum volume relative to the cycle start and end (VTins, VTexp), inspiratory and expiratory time (Tins, Texp), cycle duration (Ttot), and normalized parameters of clinical interest. The parameters with the greatest individual predictive power were combined using multivariable models to estimate VT. Their performance were quantified in terms of determination coefficient (R2), relative error (ER) and interquartile range (IQR). Using only three parameters, the results obtained for the thoracic band (VTexp, Ttot, Areaexp) were better than those obtained from the abdominal band (VTexp, Tins, Areains) with R2 = 0.94 (IQR: 0.07); ER = 6.99 (IQR: 6.12) vs R2 = 0.91 (IQR: 0.09), ER = 8.70 (IQR: 4.62). Overall performance increased to R2 = 0.97 (IQR: 0.02) and ER = 4.60 (IQR: 3.68) when parameters from the different bands were combined, further improving when was applied to segments with different inspiration-expiration patterns. In particular, the nose-nose ER = 1.39 (IQR: 0.73), nose-mouth ER = 2.11 (IQR: 1.23) and mouth-mouth ER = 2.29 (IQR: 1.44) patterns showed the best results compared to those obtained for basal, shallow and deep breathing.Clinical relevance- Respiratory pattern variability can be described using multivariable regression model for tidal volume.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算不同呼吸模式潮气量的多变量回归模型
无论是健康人还是患有不同疾病的病人,以及鼻腔呼吸、口腔呼吸、浅呼吸或深呼吸的形式,呼吸模式都存在很大的变异性。对这种变异性的分析主要取决于用于记录描述这些模式的信号的设备。在这项研究中,我们提出了考虑到不同呼吸模式的多变量回归模型来估算潮气量(VT)。23 名健康志愿者接受了考虑到不同呼吸模式的连续多传感器记录。呼吸流量和容积信号由气压计和胸腹部呼吸感应式胸压带记录。从呼吸量信号中提取了多个呼吸参数,如吸气和呼气面积(Areains 和 Areaexp)、相对于周期开始和结束的最大呼吸量(VTins 和 VTexp)、吸气和呼气时间(Tins 和 Texp)、周期持续时间(Ttot),以及临床关注的归一化参数。使用多变量模型将具有最大单项预测能力的参数结合起来以估计 VT。这些参数的性能以判定系数 (R2)、相对误差 (ER) 和四分位数范围 (IQR) 来量化。仅使用三个参数,胸腔带(VTexp、Ttot、Areaexp)的结果优于腹腔带(VTexp、Tins、Areains)的结果:R2 = 0.94(IQR:0.07);ER = 6.99(IQR:6.12)vs R2 = 0.91(IQR:0.09),ER = 8.70(IQR:4.62)。将不同波段的参数合并后,整体性能提高到 R2 = 0.97 (IQR: 0.02) 和 ER = 4.60 (IQR: 3.68)。特别是,与基础呼吸、浅呼吸和深呼吸相比,鼻-鼻 ER = 1.39(IQR:0.73)、鼻-口 ER = 2.11(IQR:1.23)和口-口 ER = 2.29(IQR:1.44)模式的结果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Cleverballoon: An integrated approach for developing a drug-coated balloon with everolimus. Machine Learning Models Predict the Need of Amputation and/or Peripheral Artery Revascularization in Hypertensive Patients Within 7-Years Follow-Up. WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes. Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1