Detecting Eye Disease Using Vision Transformers Informed by Ophthalmology Resident Gaze Data.

Shubham Kaushal, Yifan Sun, Ryan Zukerman, Royce W S Chen, Kaveri A Thakoor
{"title":"Detecting Eye Disease Using Vision Transformers Informed by Ophthalmology Resident Gaze Data<sup />.","authors":"Shubham Kaushal, Yifan Sun, Ryan Zukerman, Royce W S Chen, Kaveri A Thakoor","doi":"10.1109/EMBC40787.2023.10340746","DOIUrl":null,"url":null,"abstract":"<p><p>We showcase two proof-of-concept approaches for enhancing the Vision Transformer (ViT) model by integrating ophthalmology resident gaze data into its training. The resulting Fixation-Order-Informed ViT and Ophthalmologist-Gaze-Augmented ViT show greater accuracy and computational efficiency than ViT for detection of the eye disease, glaucoma.Clinical relevance- By enhancing glaucoma detection via our gaze-informed ViTs, we introduce a new paradigm for medical experts to directly interface with medical AI, leading the way for more accurate and interpretable AI 'teammates' in the ophthalmic clinic.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We showcase two proof-of-concept approaches for enhancing the Vision Transformer (ViT) model by integrating ophthalmology resident gaze data into its training. The resulting Fixation-Order-Informed ViT and Ophthalmologist-Gaze-Augmented ViT show greater accuracy and computational efficiency than ViT for detection of the eye disease, glaucoma.Clinical relevance- By enhancing glaucoma detection via our gaze-informed ViTs, we introduce a new paradigm for medical experts to directly interface with medical AI, leading the way for more accurate and interpretable AI 'teammates' in the ophthalmic clinic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据眼科住院医生的注视数据,利用视觉变换器检测眼疾。
我们展示了两种概念验证方法,通过将眼科住院医生的注视数据整合到视觉转换器(ViT)模型的训练中来增强该模型。临床相关性--通过我们的凝视信息 ViT 增强青光眼检测,我们为医学专家直接与医疗人工智能对接引入了一种新的范例,为眼科临床中更准确、更可解释的人工智能 "队友 "开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Cleverballoon: An integrated approach for developing a drug-coated balloon with everolimus. Machine Learning Models Predict the Need of Amputation and/or Peripheral Artery Revascularization in Hypertensive Patients Within 7-Years Follow-Up. WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes. Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1