{"title":"A Prototype System for High Frame Rate Ultrasound Imaging based Prosthetic Arm Control.","authors":"Ayush Singh, Pisharody Harikrishnan Gopalkrishnan, Mahesh Raveendranatha Panicker","doi":"10.1109/EMBC40787.2023.10340873","DOIUrl":null,"url":null,"abstract":"<p><p>The creation of unique control methods for a hand prosthesis is still a problem that has to be addressed. The best choice of a human-machine interface (HMI) that should be used to enable natural control is still a challenge. Surface electromyography (sEMG), the most popular option, has a variety of difficult-to-fix issues (electrode displacement, sweat, fatigue). The ultrasound imaging-based methodology offers a means of recognising complex muscle activity and configuration with a greater SNR and less hardware requirements as compared to sEMG. In this study, a prototype system for high frame rate ultrasound imaging for prosthetic arm control is proposed. Using the proposed framework, a virtual robotic hand simulation is developed that can mimic a human hand as illustrated in the link: https://youtu.be/LBcwQ0xzQK0. The proposed classification model simulating four hand gestures has a classification accuracy of more than 90%.Clinical relevance-The proposed system enables an ultrasound imaging based human machine interface that can be a research and development platform for novel control strategies of a hand prosthesis.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The creation of unique control methods for a hand prosthesis is still a problem that has to be addressed. The best choice of a human-machine interface (HMI) that should be used to enable natural control is still a challenge. Surface electromyography (sEMG), the most popular option, has a variety of difficult-to-fix issues (electrode displacement, sweat, fatigue). The ultrasound imaging-based methodology offers a means of recognising complex muscle activity and configuration with a greater SNR and less hardware requirements as compared to sEMG. In this study, a prototype system for high frame rate ultrasound imaging for prosthetic arm control is proposed. Using the proposed framework, a virtual robotic hand simulation is developed that can mimic a human hand as illustrated in the link: https://youtu.be/LBcwQ0xzQK0. The proposed classification model simulating four hand gestures has a classification accuracy of more than 90%.Clinical relevance-The proposed system enables an ultrasound imaging based human machine interface that can be a research and development platform for novel control strategies of a hand prosthesis.