{"title":"Patient-Specific Gingival Recession System Based on Periodontal Disease Prediction.","authors":"Sadiye Gunpinar, Ayse Sinem Sevinc, Zeynep Akgül, A Alper Tasmektepligilc, Erkan Gunpinar","doi":"10.3290/j.ijcd.b4784721","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To develop a periodontal disease prediction software and a patient-based gingival recession simulator for clinical practice aiming at improving oral hygiene motivation of patients with periodontal problems.</p><p><strong>Materials and methods: </strong>Periodontal Disease Prediction (PDP) software has three components: a) Data Loading Window (DLW) b) Three-Dimensional Mouth Model (3DM) and c) Periodontal Attachment Loss Indicator (PLI). Demographic and clinical examinations of 1057 volunteers were recorded to DLW. An unsupervised machine learning K means clustering analysis was used to categorize the data obtained from the study population and identified the periodontal risk groups. An intraoral scanner was utilized to capture direct optical intraoral data of a patient and transferred to the 3DM. The intraoral model went under two algorithm steps for obtaining a recessed model. First, gingival curves separating gingiva and tooth were extracted using a Dijkstra's algorithm. Limit curves determining boundaries of recessed regions in the intraoral model were then obtained using gingival curves.</p><p><strong>Results: </strong>Study participants were divided into three different periodontal risk categories defined as low risk (n=462), medium risk (n=336) and high risk (n=259). Gingival curves separating gingiva and tooth were extracted, and recessed models were obtained given inputs for the expected amount of recession via the proposed method. Furthermore, the user can also demonstrate the gingival recession gradually via the slider method attached to the developed programme.</p><p><strong>Conclusions: </strong>User-friendly computer-based periodontal risk estimation tool and patient-specific gingival recession simulator was developed and presented for clinical usage of dentists.</p>","PeriodicalId":48666,"journal":{"name":"International Journal of Computerized Dentistry","volume":"0 0","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computerized Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3290/j.ijcd.b4784721","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To develop a periodontal disease prediction software and a patient-based gingival recession simulator for clinical practice aiming at improving oral hygiene motivation of patients with periodontal problems.
Materials and methods: Periodontal Disease Prediction (PDP) software has three components: a) Data Loading Window (DLW) b) Three-Dimensional Mouth Model (3DM) and c) Periodontal Attachment Loss Indicator (PLI). Demographic and clinical examinations of 1057 volunteers were recorded to DLW. An unsupervised machine learning K means clustering analysis was used to categorize the data obtained from the study population and identified the periodontal risk groups. An intraoral scanner was utilized to capture direct optical intraoral data of a patient and transferred to the 3DM. The intraoral model went under two algorithm steps for obtaining a recessed model. First, gingival curves separating gingiva and tooth were extracted using a Dijkstra's algorithm. Limit curves determining boundaries of recessed regions in the intraoral model were then obtained using gingival curves.
Results: Study participants were divided into three different periodontal risk categories defined as low risk (n=462), medium risk (n=336) and high risk (n=259). Gingival curves separating gingiva and tooth were extracted, and recessed models were obtained given inputs for the expected amount of recession via the proposed method. Furthermore, the user can also demonstrate the gingival recession gradually via the slider method attached to the developed programme.
Conclusions: User-friendly computer-based periodontal risk estimation tool and patient-specific gingival recession simulator was developed and presented for clinical usage of dentists.
期刊介绍:
This journal explores the myriad innovations in the emerging field of computerized dentistry and how to integrate them into clinical practice. The bulk of the journal is devoted to the science of computer-assisted dentistry, with research articles and clinical reports on all aspects of computer-based diagnostic and therapeutic applications, with special emphasis placed on CAD/CAM and image-processing systems. Articles also address the use of computer-based communication to support patient care, assess the quality of care, and enhance clinical decision making. The journal is presented in a bilingual format, with each issue offering three types of articles: science-based, application-based, and national society reports.