Inferring connectivity of an oscillatory network via the phase dynamics reconstruction.

Frontiers in network physiology Pub Date : 2023-11-23 eCollection Date: 2023-01-01 DOI:10.3389/fnetp.2023.1298228
Michael Rosenblum, Arkady Pikovsky
{"title":"Inferring connectivity of an oscillatory network via the phase dynamics reconstruction.","authors":"Michael Rosenblum, Arkady Pikovsky","doi":"10.3389/fnetp.2023.1298228","DOIUrl":null,"url":null,"abstract":"<p><p>We review an approach for reconstructing oscillatory networks' undirected and directed connectivity from data. The technique relies on inferring the phase dynamics model. The central assumption is that we observe the outputs of all network nodes. We distinguish between two cases. In the first one, the observed signals represent smooth oscillations, while in the second one, the data are pulse-like and can be viewed as point processes. For the first case, we discuss estimating the true phase from a scalar signal, exploiting the protophase-to-phase transformation. With the phases at hand, pairwise and triplet synchronization indices can characterize the undirected connectivity. Next, we demonstrate how to infer the general form of the coupling functions for two or three oscillators and how to use these functions to quantify the directional links. We proceed with a different treatment of networks with more than three nodes. We discuss the difference between the structural and effective phase connectivity that emerges due to high-order terms in the coupling functions. For the second case of point-process data, we use the instants of spikes to infer the phase dynamics model in the Winfree form directly. This way, we obtain the network's coupling matrix in the first approximation in the coupling strength.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10704096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1298228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We review an approach for reconstructing oscillatory networks' undirected and directed connectivity from data. The technique relies on inferring the phase dynamics model. The central assumption is that we observe the outputs of all network nodes. We distinguish between two cases. In the first one, the observed signals represent smooth oscillations, while in the second one, the data are pulse-like and can be viewed as point processes. For the first case, we discuss estimating the true phase from a scalar signal, exploiting the protophase-to-phase transformation. With the phases at hand, pairwise and triplet synchronization indices can characterize the undirected connectivity. Next, we demonstrate how to infer the general form of the coupling functions for two or three oscillators and how to use these functions to quantify the directional links. We proceed with a different treatment of networks with more than three nodes. We discuss the difference between the structural and effective phase connectivity that emerges due to high-order terms in the coupling functions. For the second case of point-process data, we use the instants of spikes to infer the phase dynamics model in the Winfree form directly. This way, we obtain the network's coupling matrix in the first approximation in the coupling strength.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相位动力学重构推断振荡网络的连通性
我们回顾了一种从数据中重建振荡网络无向和有向连通性的方法。该技术依赖于推断相位动力学模型。核心假设是我们观察到了所有网络节点的输出。我们将其分为两种情况。在第一种情况下,观察到的信号代表平滑振荡,而在第二种情况下,数据是脉冲式的,可视为点过程。对于第一种情况,我们将讨论利用原相到相位变换,从标量信号中估算出真实相位。有了相位,成对和三重同步指数就可以描述无向连接的特征。接下来,我们将演示如何推断两个或三个振荡器耦合函数的一般形式,以及如何使用这些函数量化定向连接。接下来,我们将对具有三个以上节点的网络进行不同的处理。我们将讨论由于耦合函数中的高阶项而产生的结构连接性和有效相位连接性之间的差异。对于点过程数据的第二种情况,我们利用尖峰时刻直接推断 Winfree 形式的相位动力学模型。这样,我们就可以得到网络耦合矩阵的耦合强度第一近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
A statistical analysis method for probability distributions in Erdös-Rényi random networks with preferential cutting-rewiring operation. On preserving anatomical detail in statistical shape analysis for clustering: focus on left atrial appendage morphology. Exploring the origins of switching dynamics in a multifunctional reservoir computer. Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue. Connectivity of high-frequency bursts as SOZ localization biomarker.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1