Tracking the Dynamic Neural Connectivity via Conjugate Gradient Optimization.

Mingdong Li, Shuhang Chen, Zhijia Zhao, Yiwen Wang
{"title":"Tracking the Dynamic Neural Connectivity via Conjugate Gradient Optimization<sup />.","authors":"Mingdong Li, Shuhang Chen, Zhijia Zhao, Yiwen Wang","doi":"10.1109/EMBC40787.2023.10340664","DOIUrl":null,"url":null,"abstract":"<p><p>Neural connectivity describes how neuron populations coordinate and create cognitive and behavioral functions. Neural connectivity performs dynamics where its population spiking responses to stimuli or intention change over time. Brain-machine interface (BMI) provides a framework for studying dynamical neural connectivity. In BMI, point process is a powerful technique in analyzing the single neuronal tuning. And generalized linear mode (GLM) as an encoding model can incorporate the tuning in kinematics and the neural connectivity. Quantification and tracking of dynamic neural connectivity can contribute to the elucidation of the generation of brain functions in a computational way. However, most of the previous work focused on single neuronal adaptation to kinematics. When a neuron is significantly modulated by some other neurons in some tasks, the shape of the log likelihood function for single neuronal observations can be narrowed in some dimensions. And the existing gradient-based methods are not able to reach the optimum in a fast and adaptive searching way. In this work, to maximize the likelihood of observations and obtain the dynamic neural connectivity tuning parameters, we proposed a conjugate gradient-based encoding model (CGE). We illustrate CGE for likelihood function using the real experimental data under manual control and brain control. The results show that the proposed CGE has better performance in tracking the dynamic neural connectivity tuning parameters and modeling neural encoding.Clinical Relevance- Not directly related.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural connectivity describes how neuron populations coordinate and create cognitive and behavioral functions. Neural connectivity performs dynamics where its population spiking responses to stimuli or intention change over time. Brain-machine interface (BMI) provides a framework for studying dynamical neural connectivity. In BMI, point process is a powerful technique in analyzing the single neuronal tuning. And generalized linear mode (GLM) as an encoding model can incorporate the tuning in kinematics and the neural connectivity. Quantification and tracking of dynamic neural connectivity can contribute to the elucidation of the generation of brain functions in a computational way. However, most of the previous work focused on single neuronal adaptation to kinematics. When a neuron is significantly modulated by some other neurons in some tasks, the shape of the log likelihood function for single neuronal observations can be narrowed in some dimensions. And the existing gradient-based methods are not able to reach the optimum in a fast and adaptive searching way. In this work, to maximize the likelihood of observations and obtain the dynamic neural connectivity tuning parameters, we proposed a conjugate gradient-based encoding model (CGE). We illustrate CGE for likelihood function using the real experimental data under manual control and brain control. The results show that the proposed CGE has better performance in tracking the dynamic neural connectivity tuning parameters and modeling neural encoding.Clinical Relevance- Not directly related.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过共轭梯度优化追踪动态神经连接性
神经连通性描述了神经元群如何协调并创造认知和行为功能。神经连通性具有动态性,其群体对刺激或意向的尖峰反应会随着时间的推移而变化。脑机接口(BMI)为研究动态神经连接提供了一个框架。在 BMI 中,点过程是分析单个神经元调谐的有力技术。而广义线性模式(GLM)作为一种编码模型,可以将运动学中的调谐与神经连接结合起来。对动态神经连接的量化和追踪有助于以计算方式阐明大脑功能的产生。然而,之前的大部分工作都集中在单个神经元对运动学的适应上。当一个神经元在某些任务中受到其他神经元的明显调制时,单个神经元观测的对数似然函数的形状会在某些维度上变窄。而现有的基于梯度的方法无法以快速和自适应搜索的方式达到最优。在这项工作中,为了最大化观测值的似然并获得动态神经连接调谐参数,我们提出了一种基于共轭梯度的编码模型(CGE)。我们利用人工控制和大脑控制下的真实实验数据对 CGE 的似然函数进行了说明。结果表明,所提出的共轭梯度编码模型在跟踪动态神经连接调谐参数和神经编码建模方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Cleverballoon: An integrated approach for developing a drug-coated balloon with everolimus. Machine Learning Models Predict the Need of Amputation and/or Peripheral Artery Revascularization in Hypertensive Patients Within 7-Years Follow-Up. WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes. Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1