Snorre Jallbjørn, Søren F. Jarner, Niels R. Hansen
{"title":"Forecasting, interventions and selection: the benefits of a causal mortality model","authors":"Snorre Jallbjørn, Søren F. Jarner, Niels R. Hansen","doi":"10.1007/s13385-023-00372-2","DOIUrl":null,"url":null,"abstract":"<p>Integrating epidemiological information into mortality models has the potential to improve forecasting accuracy and facilitate the assessment of preventive measures that reduce disease risk. While probabilistic models are often used for mortality forecasting, predicting how a system behaves under external manipulation requires a causal model. In this paper, we utilize the potential outcomes framework to explore how population-level mortality forecasts are affected by interventions, and discuss the assumptions and data needed to operationalize such an analysis. A unique challenge arises in population-level mortality models where common forecasting methods treat risk prevalence as an exogenous process. This approach simplifies the forecasting process but overlooks (part of) the interdependency between risk and death, limiting the model’s ability to capture selection-induced effects. Using techniques from causal mediation theory, we quantify the selection effect typically missing in studies on cause-of-death elimination and when analyzing actions that modify risk prevalence. Specifically, we decompose the total effect of an intervention into a part directly attributable to the intervention and a part due to subsequent selection. We illustrate the effects with U.S. data.</p>","PeriodicalId":44305,"journal":{"name":"European Actuarial Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13385-023-00372-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating epidemiological information into mortality models has the potential to improve forecasting accuracy and facilitate the assessment of preventive measures that reduce disease risk. While probabilistic models are often used for mortality forecasting, predicting how a system behaves under external manipulation requires a causal model. In this paper, we utilize the potential outcomes framework to explore how population-level mortality forecasts are affected by interventions, and discuss the assumptions and data needed to operationalize such an analysis. A unique challenge arises in population-level mortality models where common forecasting methods treat risk prevalence as an exogenous process. This approach simplifies the forecasting process but overlooks (part of) the interdependency between risk and death, limiting the model’s ability to capture selection-induced effects. Using techniques from causal mediation theory, we quantify the selection effect typically missing in studies on cause-of-death elimination and when analyzing actions that modify risk prevalence. Specifically, we decompose the total effect of an intervention into a part directly attributable to the intervention and a part due to subsequent selection. We illustrate the effects with U.S. data.
期刊介绍:
Actuarial science and actuarial finance deal with the study, modeling and managing of insurance and related financial risks for which stochastic models and statistical methods are available. Topics include classical actuarial mathematics such as life and non-life insurance, pension funds, reinsurance, and also more recent areas of interest such as risk management, asset-and-liability management, solvency, catastrophe modeling, systematic changes in risk parameters, longevity, etc. EAJ is designed for the promotion and development of actuarial science and actuarial finance. For this, we publish original actuarial research papers, either theoretical or applied, with innovative applications, as well as case studies on the evaluation and implementation of new mathematical methods in insurance and actuarial finance. We also welcome survey papers on topics of recent interest in the field. EAJ is the successor of six national actuarial journals, and particularly focuses on links between actuarial theory and practice. In order to serve as a platform for this exchange, we also welcome discussions (typically from practitioners, with a length of 1-3 pages) on published papers that highlight the application aspects of the discussed paper. Such discussions can also suggest modifications of the studied problem which are of particular interest to actuarial practice. Thus, they can serve as motivation for further studies.Finally, EAJ now also publishes ‘Letters’, which are short papers (up to 5 pages) that have academic and/or practical relevance and consist of e.g. an interesting idea, insight, clarification or observation of a cross-connection that deserves publication, but is shorter than a usual research article. A detailed description or proposition of a new relevant research question, short but curious mathematical results that deserve the attention of the actuarial community as well as novel applications of mathematical and actuarial concepts are equally welcome. Letter submissions will be reviewed within 6 weeks, so that they provide an opportunity to get good and pertinent ideas published quickly, while the same refereeing standards as for other submissions apply. Both academics and practitioners are encouraged to contribute to this new format. Authors are invited to submit their papers online via http://euaj.edmgr.com.