Claim reserving via inverse probability weighting: a micro-level Chain-Ladder method

IF 0.8 Q4 BUSINESS, FINANCE European Actuarial Journal Pub Date : 2024-08-28 DOI:10.1007/s13385-024-00395-3
Sebastián Calcetero Vanegas, Andrei L. Badescu, X. Sheldon Lin
{"title":"Claim reserving via inverse probability weighting: a micro-level Chain-Ladder method","authors":"Sebastián Calcetero Vanegas, Andrei L. Badescu, X. Sheldon Lin","doi":"10.1007/s13385-024-00395-3","DOIUrl":null,"url":null,"abstract":"<p>Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resulting in conservative reserve predictions. Micro-level reserving, utilizing stochastic modeling with granular information, can improve predictions, but tends to involve less attractive and complex models for practitioners. This paper aims to strike a practical balance between aggregate and individual models by introducing a methodology that enables the Chain-Ladder method to incorporate individual information. We achieve this by proposing a novel framework and formulating the claim reserving problem within a population sampling context. We introduce a reserve estimator in a frequency- and severity-distribution-free manner that utilizes inverse probability weights (IPW) driven by individual information, akin to propensity scores. We demonstrate that the Chain-Ladder method emerges as a particular case of such an IPW estimator, thereby inheriting a statistically sound foundation based on population sampling theory that enables the use of granular information and other extensions.</p>","PeriodicalId":44305,"journal":{"name":"European Actuarial Journal","volume":"60 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13385-024-00395-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resulting in conservative reserve predictions. Micro-level reserving, utilizing stochastic modeling with granular information, can improve predictions, but tends to involve less attractive and complex models for practitioners. This paper aims to strike a practical balance between aggregate and individual models by introducing a methodology that enables the Chain-Ladder method to incorporate individual information. We achieve this by proposing a novel framework and formulating the claim reserving problem within a population sampling context. We introduce a reserve estimator in a frequency- and severity-distribution-free manner that utilizes inverse probability weights (IPW) driven by individual information, akin to propensity scores. We demonstrate that the Chain-Ladder method emerges as a particular case of such an IPW estimator, thereby inheriting a statistically sound foundation based on population sampling theory that enables the use of granular information and other extensions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过反概率加权进行索赔储备:一种微观层面的链梯法
索赔准备金主要依赖于宏观模型,其中最广泛采用的是链梯法。这些方法都是启发式的,没有最基本的统计基础,依赖于过于简化的数据假设,忽视了投保人的异质性,往往会导致保守的准备金预测。微观层面的准备金利用具有细粒度信息的随机建模,可以提高预测效果,但对从业人员而言,往往涉及吸引力较低的复杂模型。本文旨在通过引入一种方法,使链梯法能够纳入个体信息,从而在总体模型和个体模型之间达成一种实用的平衡。为此,我们提出了一个新颖的框架,并在群体抽样的背景下提出了索赔准备金问题。我们以无频率和严重程度分布的方式引入了一种准备金估算器,该估算器利用由个体信息驱动的反概率权重 (IPW),类似于倾向分数。我们证明,链梯法是这种 IPW 估算器的一个特殊案例,从而继承了基于人口抽样理论的统计基础,使其能够使用细粒度信息和其他扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Actuarial Journal
European Actuarial Journal BUSINESS, FINANCE-
CiteScore
2.30
自引率
8.30%
发文量
35
期刊介绍: Actuarial science and actuarial finance deal with the study, modeling and managing of insurance and related financial risks for which stochastic models and statistical methods are available. Topics include classical actuarial mathematics such as life and non-life insurance, pension funds, reinsurance, and also more recent areas of interest such as risk management, asset-and-liability management, solvency, catastrophe modeling, systematic changes in risk parameters, longevity, etc. EAJ is designed for the promotion and development of actuarial science and actuarial finance. For this, we publish original actuarial research papers, either theoretical or applied, with innovative applications, as well as case studies on the evaluation and implementation of new mathematical methods in insurance and actuarial finance. We also welcome survey papers on topics of recent interest in the field. EAJ is the successor of six national actuarial journals, and particularly focuses on links between actuarial theory and practice. In order to serve as a platform for this exchange, we also welcome discussions (typically from practitioners, with a length of 1-3 pages) on published papers that highlight the application aspects of the discussed paper. Such discussions can also suggest modifications of the studied problem which are of particular interest to actuarial practice. Thus, they can serve as motivation for further studies.Finally, EAJ now also publishes ‘Letters’, which are short papers (up to 5 pages) that have academic and/or practical relevance and consist of e.g. an interesting idea, insight, clarification or observation of a cross-connection that deserves publication, but is shorter than a usual research article. A detailed description or proposition of a new relevant research question, short but curious mathematical results that deserve the attention of the actuarial community as well as novel applications of mathematical and actuarial concepts are equally welcome. Letter submissions will be reviewed within 6 weeks, so that they provide an opportunity to get good and pertinent ideas published quickly, while the same refereeing standards as for other submissions apply. Both academics and practitioners are encouraged to contribute to this new format. Authors are invited to submit their papers online via http://euaj.edmgr.com.
期刊最新文献
Hybrid life insurance valuation based on a new standard deviation premium principle in a stochastic interest rate framework Dataset of an actual motor vehicle insurance portfolio Bayesian credibility model with heavy tail random variables: calibration of the prior and application to natural disasters and cyber insurance Claim reserving via inverse probability weighting: a micro-level Chain-Ladder method Robust asymptotic insurance-finance arbitrage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1