{"title":"Development of UV reactor controller in ballast water treatment system to minimize the biological threat on marine environment","authors":"Nguyen Dinh Thach, Phan Van Hung","doi":"10.1016/j.seares.2023.102465","DOIUrl":null,"url":null,"abstract":"<div><p>Ballast water management is an effective measure to ensure that organisms and bacteria do not migrate with the ballast water to other areas. The International Maritime Organization adopted the International Convention on the Control and Management of Ballast Water and Ship Sediments, in 2004 which regulates issues of ballast water management. Many technologies have been researched and developed; in particular, using UV rays is the method that is evaluated with many advantages and meets the requirements of the Convention. The UV reactor in the ballast water treatment system has a very large capacity, so in the ballast water treatment system, it is often necessary to use many high-power UV lamps in one UV reactor. These high-power UV lamps consume a lot of electrical energy and are very expensive. Research on the control of UV radiation in the process of disinfecting water appropriately and effectively is necessary in order to improve the life of UV lamps, consume less electricity, and ensuring anti-bacterial duty is well conducted. This paper presents the development of a controller for a UV reactor and ballast water flow in the ballast water treatment system installed on ships. Experimental results on ships indicate the efficiency achieved by the developed UV controller.</p></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":"198 ","pages":"Article 102465"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138511012300134X/pdfft?md5=0baf4999ee1e5edee45fc58f8ba93660&pid=1-s2.0-S138511012300134X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138511012300134X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ballast water management is an effective measure to ensure that organisms and bacteria do not migrate with the ballast water to other areas. The International Maritime Organization adopted the International Convention on the Control and Management of Ballast Water and Ship Sediments, in 2004 which regulates issues of ballast water management. Many technologies have been researched and developed; in particular, using UV rays is the method that is evaluated with many advantages and meets the requirements of the Convention. The UV reactor in the ballast water treatment system has a very large capacity, so in the ballast water treatment system, it is often necessary to use many high-power UV lamps in one UV reactor. These high-power UV lamps consume a lot of electrical energy and are very expensive. Research on the control of UV radiation in the process of disinfecting water appropriately and effectively is necessary in order to improve the life of UV lamps, consume less electricity, and ensuring anti-bacterial duty is well conducted. This paper presents the development of a controller for a UV reactor and ballast water flow in the ballast water treatment system installed on ships. Experimental results on ships indicate the efficiency achieved by the developed UV controller.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.