Cross-Regional Data Initiative for the Assessment and Development of Treatment for Neurological and Mental Disorders

IF 3.4 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Clinical Epidemiology Pub Date : 2023-12-21 DOI:10.2147/clep.s426485
Daniel Hsiang-Te Tsai, J Simon Bell, Shahab Abtahi, Brenda N Baak, Marloes T Bazelier, Ruth Brauer, Adrienne YL Chan, Esther W Chan, Haoqian Chen, Celine SL Chui, Sharon Cook, Stephen Crystal, Poonam Gandhi, Sirpa Hartikainen, Frederick K Ho, Shao-Ti Hsu, Jenni Ilomäki, Ju Hwan Kim, Olaf H Klungel, Marjaana Koponen, Wallis CY Lau, Kui Kai Lau, Terry YS Lum, Hao Luo, Kenneth KC Man, Jill P Pell, Soko Setoguchi, Shih-Chieh Shao, Chin-Yao Shen, Ju-Young Shin, Patrick C Souverein, Anna-Maija Tolppanen, Li Wei, Ian CK Wong, Edward Chia-Cheng Lai
{"title":"Cross-Regional Data Initiative for the Assessment and Development of Treatment for Neurological and Mental Disorders","authors":"Daniel Hsiang-Te Tsai, J Simon Bell, Shahab Abtahi, Brenda N Baak, Marloes T Bazelier, Ruth Brauer, Adrienne YL Chan, Esther W Chan, Haoqian Chen, Celine SL Chui, Sharon Cook, Stephen Crystal, Poonam Gandhi, Sirpa Hartikainen, Frederick K Ho, Shao-Ti Hsu, Jenni Ilomäki, Ju Hwan Kim, Olaf H Klungel, Marjaana Koponen, Wallis CY Lau, Kui Kai Lau, Terry YS Lum, Hao Luo, Kenneth KC Man, Jill P Pell, Soko Setoguchi, Shih-Chieh Shao, Chin-Yao Shen, Ju-Young Shin, Patrick C Souverein, Anna-Maija Tolppanen, Li Wei, Ian CK Wong, Edward Chia-Cheng Lai","doi":"10.2147/clep.s426485","DOIUrl":null,"url":null,"abstract":"<strong>Purpose:</strong> To describe and categorize detailed components of databases in the Neurological and Mental Health Global Epidemiology Network (NeuroGEN).<br/><strong>Methods:</strong> An online 132-item questionnaire was sent to key researchers and data custodians of NeuroGEN in North America, Europe, Asia and Oceania. From the responses, we assessed data characteristics including population coverage, data follow-up, clinical information, validity of diagnoses, medication use and data latency. We also evaluated the possibility of conversion into a common data model (CDM) to implement a federated network approach. Moreover, we used radar charts to visualize the data capacity assessments, based on different perspectives.<br/><strong>Results:</strong> The results indicated that the 15 databases covered approximately 320 million individuals, included in 7 nationwide claims databases from Australia, Finland, South Korea, Taiwan and the US, 6 population-based electronic health record databases from Hong Kong, Scotland, Taiwan, the Netherlands and the UK, and 2 biomedical databases from Taiwan and the UK.<br/><strong>Conclusion:</strong> The 15 databases showed good potential for a federated network approach using a common data model. Our study provided publicly accessible information on these databases for those seeking to employ real-world data to facilitate current assessment and future development of treatments for neurological and mental disorders.<br/><br/><strong>Keywords:</strong> meta-data, data repository, Neurological and Mental Health Global Epidemiology Network, NeuroGEN<br/>","PeriodicalId":10362,"journal":{"name":"Clinical Epidemiology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/clep.s426485","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To describe and categorize detailed components of databases in the Neurological and Mental Health Global Epidemiology Network (NeuroGEN).
Methods: An online 132-item questionnaire was sent to key researchers and data custodians of NeuroGEN in North America, Europe, Asia and Oceania. From the responses, we assessed data characteristics including population coverage, data follow-up, clinical information, validity of diagnoses, medication use and data latency. We also evaluated the possibility of conversion into a common data model (CDM) to implement a federated network approach. Moreover, we used radar charts to visualize the data capacity assessments, based on different perspectives.
Results: The results indicated that the 15 databases covered approximately 320 million individuals, included in 7 nationwide claims databases from Australia, Finland, South Korea, Taiwan and the US, 6 population-based electronic health record databases from Hong Kong, Scotland, Taiwan, the Netherlands and the UK, and 2 biomedical databases from Taiwan and the UK.
Conclusion: The 15 databases showed good potential for a federated network approach using a common data model. Our study provided publicly accessible information on these databases for those seeking to employ real-world data to facilitate current assessment and future development of treatments for neurological and mental disorders.

Keywords: meta-data, data repository, Neurological and Mental Health Global Epidemiology Network, NeuroGEN
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估和开发神经和精神疾病治疗方法的跨地区数据倡议
目的:描述神经与精神健康全球流行病学网络(NeuroGEN)数据库的详细组成部分并对其进行分类:向北美、欧洲、亚洲和大洋洲 NeuroGEN 的主要研究人员和数据保管人发送了一份 132 项的在线调查问卷。我们根据答复评估了数据特征,包括人口覆盖率、数据跟踪、临床信息、诊断的有效性、药物使用和数据潜伏期。我们还评估了转换为通用数据模型(CDM)以实施联合网络方法的可能性。此外,我们还使用雷达图从不同角度对数据容量评估进行了可视化分析:结果表明,15 个数据库覆盖了约 3.2 亿人,包括来自澳大利亚、芬兰、韩国、台湾和美国的 7 个全国性索赔数据库,来自香港、苏格兰、台湾、荷兰和英国的 6 个基于人口的电子健康记录数据库,以及来自台湾和英国的 2 个生物医学数据库:结论:这 15 个数据库显示出使用通用数据模型的联合网络方法的巨大潜力。我们的研究为那些寻求利用真实世界数据促进当前评估和未来开发神经和精神疾病治疗方法的人提供了可公开访问的这些数据库的信息。 关键词:元数据、数据存储库、神经和精神健康全球流行病学网络、NeuroGEN
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Epidemiology
Clinical Epidemiology Medicine-Epidemiology
CiteScore
6.30
自引率
5.10%
发文量
169
审稿时长
16 weeks
期刊介绍: Clinical Epidemiology is an international, peer reviewed, open access journal. Clinical Epidemiology focuses on the application of epidemiological principles and questions relating to patients and clinical care in terms of prevention, diagnosis, prognosis, and treatment. Clinical Epidemiology welcomes papers covering these topics in form of original research and systematic reviews. Clinical Epidemiology has a special interest in international electronic medical patient records and other routine health care data, especially as applied to safety of medical interventions, clinical utility of diagnostic procedures, understanding short- and long-term clinical course of diseases, clinical epidemiological and biostatistical methods, and systematic reviews. When considering submission of a paper utilizing publicly-available data, authors should ensure that such studies add significantly to the body of knowledge and that they use appropriate validated methods for identifying health outcomes. The journal has launched special series describing existing data sources for clinical epidemiology, international health care systems and validation studies of algorithms based on databases and registries.
期刊最新文献
Validity of a Hypertrophic Cardiomyopathy Diagnosis in Adult Patients in the Danish National Patient Register. Assessing the Role of Serum Prealbumin in Prognostic Studies of Stroke: Reflections on Existing Research Methods [Letter]. Validating ICD-10 Diagnosis Codes for Guillain-Barré Syndrome in Taiwan's National Health Insurance Claims Database. Harmonized Data Quality Indicators Maintain Data Quality in Long-Term Safety Studies Using Multiple Sclerosis Registries/Data Sources: Experience from the CLARION Study. Incidence of Graves' Disease with Validation and Completeness of the Diagnosis for Registry Extracts in the Danish National Patient Register.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1