Samuel D. Spetalnick;Muya Chang;Shota Konno;Brian Crafton;Ashwin Sanjay Lele;Win-San Khwa;Yu-Der Chih;Meng-Fan Chang;Arijit Raychowdhury
{"title":"A 40-nm Compute-in-Memory Macro With RRAM Addressing IR Drop and Off-State Current","authors":"Samuel D. Spetalnick;Muya Chang;Shota Konno;Brian Crafton;Ashwin Sanjay Lele;Win-San Khwa;Yu-Der Chih;Meng-Fan Chang;Arijit Raychowdhury","doi":"10.1109/LSSC.2023.3338212","DOIUrl":null,"url":null,"abstract":"This letter describes an analog current-summing compute-in-memory macro using resistive random-access memory (RRAM). The readout transimpedance amplifiers use offset canceling with differential inputs from added sensing paths for the bitline (BL) and sourceline (SL) to minimize channel-to-channel (ch./ch.) gain error while mitigating IR drop in the BL, SL, and multiplexors (MUXes). The analog-to-digital converters (ADCs) use dynamic offset cancelation to remove ch./ch. ADC intrinsic offset and error due to RRAM off-state current. The 64Kb macro implemented with foundry RRAM in 40-nm CMOS has an area of 0.0263 mm2, ch./ch. gain std. dev. of 1.9%, IR drop per-wordline of 0.004%, and 1.1 V efficiency of 7.8–58.8 TOPS/W.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"10-13"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10336865/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This letter describes an analog current-summing compute-in-memory macro using resistive random-access memory (RRAM). The readout transimpedance amplifiers use offset canceling with differential inputs from added sensing paths for the bitline (BL) and sourceline (SL) to minimize channel-to-channel (ch./ch.) gain error while mitigating IR drop in the BL, SL, and multiplexors (MUXes). The analog-to-digital converters (ADCs) use dynamic offset cancelation to remove ch./ch. ADC intrinsic offset and error due to RRAM off-state current. The 64Kb macro implemented with foundry RRAM in 40-nm CMOS has an area of 0.0263 mm2, ch./ch. gain std. dev. of 1.9%, IR drop per-wordline of 0.004%, and 1.1 V efficiency of 7.8–58.8 TOPS/W.