A. Li Veiros, Manon K. Schweinfurth, Michael M. Webster
{"title":"On closer inspection: Reviewing the debate on whether fish cooperate to inspect predators","authors":"A. Li Veiros, Manon K. Schweinfurth, Michael M. Webster","doi":"10.1111/eth.13427","DOIUrl":null,"url":null,"abstract":"<p>Cooperative behaviours, which benefit a recipient, are widespread in the animal kingdom; yet their evolution is not straightforward. Reciprocity, i.e., cooperating with previously experienced cooperative partners, has been suggested to underly cooperation, but has been contested throughout the years. Once a textbook example of reciprocity was cooperative predator inspection, where one or several individuals leave their group to approach a potential threat. Each can at any point stop or retreat, increasing the risk for its partner. It was suggested that inspecting individuals follow a specific reciprocal strategy called tit-for-tat, i.e., cooperating on the first move and then copying the partner's last move. Numerous studies provide evidence to support the claim that fish cooperate to inspect predators, including three-spined sticklebacks (<i>Gasterosteus aculeatus</i>), guppies (<i>Poecilia reticulata</i>) and minnows (<i>Phoxinus phoxinus</i>). However, over the past few decades some scholars have expressed scepticism whether predator inspection is indeed a cooperative behaviour or rather a case of by-product mutualism, which describes behaviours that benefit a partner as a corollary of an otherwise selfish behaviour. For instance, it has been shown that pairs of fish moving in unfamiliar environments appear to coordinate movements even in the absence of predators. Many studies have also used coarse measures of overall approach rates towards predators rather than the fine-grained analyses necessary to infer tit-for-tat in cooperative inspections. Now is the time to return to the question of cooperative predator inspection with new tools and approaches to resolve a decades-old debate.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eth.13427","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eth.13427","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cooperative behaviours, which benefit a recipient, are widespread in the animal kingdom; yet their evolution is not straightforward. Reciprocity, i.e., cooperating with previously experienced cooperative partners, has been suggested to underly cooperation, but has been contested throughout the years. Once a textbook example of reciprocity was cooperative predator inspection, where one or several individuals leave their group to approach a potential threat. Each can at any point stop or retreat, increasing the risk for its partner. It was suggested that inspecting individuals follow a specific reciprocal strategy called tit-for-tat, i.e., cooperating on the first move and then copying the partner's last move. Numerous studies provide evidence to support the claim that fish cooperate to inspect predators, including three-spined sticklebacks (Gasterosteus aculeatus), guppies (Poecilia reticulata) and minnows (Phoxinus phoxinus). However, over the past few decades some scholars have expressed scepticism whether predator inspection is indeed a cooperative behaviour or rather a case of by-product mutualism, which describes behaviours that benefit a partner as a corollary of an otherwise selfish behaviour. For instance, it has been shown that pairs of fish moving in unfamiliar environments appear to coordinate movements even in the absence of predators. Many studies have also used coarse measures of overall approach rates towards predators rather than the fine-grained analyses necessary to infer tit-for-tat in cooperative inspections. Now is the time to return to the question of cooperative predator inspection with new tools and approaches to resolve a decades-old debate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.