P Jane Yeadon, Frederick J Bowring, David E A Catcheside
{"title":"Recombination hotspots in Neurospora crassa controlled by idiomorphic sequences and meiotic silencing.","authors":"P Jane Yeadon, Frederick J Bowring, David E A Catcheside","doi":"10.1093/genetics/iyad213","DOIUrl":null,"url":null,"abstract":"Genes regulating recombination in specific chromosomal intervals of Neurospora crassa were described in the 1960s but the mechanism is still unknown. For each of the rec-1, rec-2 and rec-3 genes, a single copy of the putative dominant allele, for example rec-2SL found in St Lawrence OR74 A wild type, reduces recombination in chromosomal regions specific to that gene. However, when we sequenced the recessive allele, rec-2LG (derived from the Lindegren 1A wild type) we found that a 10 kb region in rec-2SL strains was replaced by a 2.7 kb unrelated sequence, making the \"alleles\" idiomorphs. When we introduced sad-1, a mutant lacking the RNA-dependent RNA polymerase that silences unpaired coding regions during meiosis into crosses heterozygous rec-2SL/rec-2LG, it increased recombination, indicating that meiotic silencing of a gene promoting recombination is responsible for dominant suppression of recombination. Consistent with this, mutation of rec-2LG by RIP (Repeat-Induced Point mutation) generated an allele with multiple stop codons in the predicted rec-2 gene, which does not promote recombination and is recessive to rec-2LG. Sad-1 also relieves suppression of recombination in relevant target regions, in crosses heterozygous for rec-1 alleles and in crosses heterozygous for rec-3 alleles. We conclude that for all three known rec genes, one allele appears dominant only because meiotic silencing prevents the product of the active, \"recessive\", allele from stimulating recombination during meiosis. In addition, the proposed amino acid sequence of REC-2 suggests that regulation of recombination in Neurospora differs from any currently known mechanism.","PeriodicalId":12706,"journal":{"name":"Genetics","volume":"9 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyad213","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Genes regulating recombination in specific chromosomal intervals of Neurospora crassa were described in the 1960s but the mechanism is still unknown. For each of the rec-1, rec-2 and rec-3 genes, a single copy of the putative dominant allele, for example rec-2SL found in St Lawrence OR74 A wild type, reduces recombination in chromosomal regions specific to that gene. However, when we sequenced the recessive allele, rec-2LG (derived from the Lindegren 1A wild type) we found that a 10 kb region in rec-2SL strains was replaced by a 2.7 kb unrelated sequence, making the "alleles" idiomorphs. When we introduced sad-1, a mutant lacking the RNA-dependent RNA polymerase that silences unpaired coding regions during meiosis into crosses heterozygous rec-2SL/rec-2LG, it increased recombination, indicating that meiotic silencing of a gene promoting recombination is responsible for dominant suppression of recombination. Consistent with this, mutation of rec-2LG by RIP (Repeat-Induced Point mutation) generated an allele with multiple stop codons in the predicted rec-2 gene, which does not promote recombination and is recessive to rec-2LG. Sad-1 also relieves suppression of recombination in relevant target regions, in crosses heterozygous for rec-1 alleles and in crosses heterozygous for rec-3 alleles. We conclude that for all three known rec genes, one allele appears dominant only because meiotic silencing prevents the product of the active, "recessive", allele from stimulating recombination during meiosis. In addition, the proposed amino acid sequence of REC-2 suggests that regulation of recombination in Neurospora differs from any currently known mechanism.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.