{"title":"Dual Bounds from Decision Diagram-Based Route Relaxations: An Application to Truck-Drone Routing","authors":"Ziye Tang, Willem-Jan van Hoeve","doi":"10.1287/trsc.2021.0170","DOIUrl":null,"url":null,"abstract":"For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams and dynamic programming models used for pricing in branch-and-cut-and-price algorithms. We apply techniques from the decision diagram literature to generate and strengthen novel route relaxations for obtaining dual bounds without using column generation. Our approach is generic and can be applied to various vehicle routing problems in which corresponding dynamic programming models are available. We apply our framework to the traveling salesman with drone problem and show that it produces dual bounds competitive to those from the state of the art. Applied to larger problem instances in which the state-of-the-art approach does not scale, our method outperforms other bounding techniques from the literature.Funding: This work was supported by the National Science Foundation [Grant 1918102] and the Office of Naval Research [Grants N00014-18-1-2129 and N00014-21-1-2240].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0170 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2021.0170","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams and dynamic programming models used for pricing in branch-and-cut-and-price algorithms. We apply techniques from the decision diagram literature to generate and strengthen novel route relaxations for obtaining dual bounds without using column generation. Our approach is generic and can be applied to various vehicle routing problems in which corresponding dynamic programming models are available. We apply our framework to the traveling salesman with drone problem and show that it produces dual bounds competitive to those from the state of the art. Applied to larger problem instances in which the state-of-the-art approach does not scale, our method outperforms other bounding techniques from the literature.Funding: This work was supported by the National Science Foundation [Grant 1918102] and the Office of Naval Research [Grants N00014-18-1-2129 and N00014-21-1-2240].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0170 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.