Tripartite-structure transformer for hyperspectral image classification

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2023-12-21 DOI:10.1111/coin.12611
Liuwei Wan, Meili Zhou, Shengqin Jiang, Zongwen Bai, Haokui Zhang
{"title":"Tripartite-structure transformer for hyperspectral image classification","authors":"Liuwei Wan,&nbsp;Meili Zhou,&nbsp;Shengqin Jiang,&nbsp;Zongwen Bai,&nbsp;Haokui Zhang","doi":"10.1111/coin.12611","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral images contain rich spatial and spectral information, which provides a strong basis for distinguishing different land-cover objects. Therefore, hyperspectral image (HSI) classification has been a hot research topic. With the advent of deep learning, convolutional neural networks (CNNs) have become a popular method for hyperspectral image classification. However, convolutional neural network (CNN) has strong local feature extraction ability but cannot deal with long-distance dependence well. Vision Transformer (ViT) is a recent development that can address this limitation, but it is not effective in extracting local features and has low computational efficiency. To overcome these drawbacks, we propose a hybrid classification network that combines the strengths of both CNN and ViT, names Spatial-Spectral Former(SSF). The shallow layer employs 3D convolution to extract local features and reduce data dimensions. The deep layer employs a spectral-spatial transformer module for global feature extraction and information enhancement in spectral and spatial dimensions. Our proposed model achieves promising results on widely used public HSI datasets compared to other deep learning methods, including CNN, ViT, and hybrid models.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12611","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral images contain rich spatial and spectral information, which provides a strong basis for distinguishing different land-cover objects. Therefore, hyperspectral image (HSI) classification has been a hot research topic. With the advent of deep learning, convolutional neural networks (CNNs) have become a popular method for hyperspectral image classification. However, convolutional neural network (CNN) has strong local feature extraction ability but cannot deal with long-distance dependence well. Vision Transformer (ViT) is a recent development that can address this limitation, but it is not effective in extracting local features and has low computational efficiency. To overcome these drawbacks, we propose a hybrid classification network that combines the strengths of both CNN and ViT, names Spatial-Spectral Former(SSF). The shallow layer employs 3D convolution to extract local features and reduce data dimensions. The deep layer employs a spectral-spatial transformer module for global feature extraction and information enhancement in spectral and spatial dimensions. Our proposed model achieves promising results on widely used public HSI datasets compared to other deep learning methods, including CNN, ViT, and hybrid models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高光谱图像分类的三方结构变换器
高光谱图像包含丰富的空间和光谱信息,为区分不同的陆地覆盖物提供了坚实的基础。因此,高光谱图像(HSI)分类一直是研究热点。随着深度学习技术的发展,卷积神经网络(CNN)已成为高光谱图像分类的一种流行方法。然而,卷积神经网络(CNN)具有很强的局部特征提取能力,却不能很好地处理长距离依赖关系。视觉变换器(ViT)是最近开发的一种可以解决这一局限性的方法,但它在提取局部特征方面效果不佳,而且计算效率较低。为了克服这些缺点,我们提出了一种混合分类网络,它结合了 CNN 和 ViT 的优点,名为空间-频谱前置(SSF)。浅层采用三维卷积来提取局部特征并降低数据维度。深层采用频谱-空间变换器模块来提取全局特征,并在频谱和空间维度上增强信息。与其他深度学习方法(包括 CNN、ViT 和混合模型)相比,我们提出的模型在广泛使用的公共 HSI 数据集上取得了可喜的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Issue Information Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1