A hybrid approach for portfolio construction: Combing two-stage ensemble forecasting model with portfolio optimization

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2023-12-15 DOI:10.1111/coin.12617
Wei Chen, Zinuo Liu, Lifen Jia
{"title":"A hybrid approach for portfolio construction: Combing two-stage ensemble forecasting model with portfolio optimization","authors":"Wei Chen,&nbsp;Zinuo Liu,&nbsp;Lifen Jia","doi":"10.1111/coin.12617","DOIUrl":null,"url":null,"abstract":"<p>Combining the stock prediction with portfolio optimization can improve the performance of the portfolio construction. In this article, we propose a novel portfolio construction approach by utilizing a two-stage ensemble model to forecast stock prices and combining the forecasting results with the portfolio optimization. To be specific, there are two phases in the approach: stock prediction and portfolio optimization. The stock prediction has two stages. In the first stage, three neural networks, that is, multilayer perceptron (MLP), gated recurrent unit (GRU), and long short-term memory (LSTM) are used to integrate the forecasting results of four individual models, that is, LSTM, GRU, deep multilayer perceptron (DMLP), and random forest (RF). In the second stage, the time-varying weight ordinary least square model (OLS) is utilized to combine the first-stage forecasting results to obtain the ultimate forecasting results, and then the stocks having a better potential return on investment are chosen. In the portfolio optimization, a diversified mean-variance with forecasting model named DMVF is proposed, in which an average predictive error term is considered to obtain excess returns, and a 2-norm cost function is introduced to diversify the portfolio. Using the historical data from the Shanghai stock exchange as the study sample, the results of the experiments indicate the DMVF model with two-stage ensemble prediction outperforms benchmarks in terms of return and return-risk characteristics.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12617","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Combining the stock prediction with portfolio optimization can improve the performance of the portfolio construction. In this article, we propose a novel portfolio construction approach by utilizing a two-stage ensemble model to forecast stock prices and combining the forecasting results with the portfolio optimization. To be specific, there are two phases in the approach: stock prediction and portfolio optimization. The stock prediction has two stages. In the first stage, three neural networks, that is, multilayer perceptron (MLP), gated recurrent unit (GRU), and long short-term memory (LSTM) are used to integrate the forecasting results of four individual models, that is, LSTM, GRU, deep multilayer perceptron (DMLP), and random forest (RF). In the second stage, the time-varying weight ordinary least square model (OLS) is utilized to combine the first-stage forecasting results to obtain the ultimate forecasting results, and then the stocks having a better potential return on investment are chosen. In the portfolio optimization, a diversified mean-variance with forecasting model named DMVF is proposed, in which an average predictive error term is considered to obtain excess returns, and a 2-norm cost function is introduced to diversify the portfolio. Using the historical data from the Shanghai stock exchange as the study sample, the results of the experiments indicate the DMVF model with two-stage ensemble prediction outperforms benchmarks in terms of return and return-risk characteristics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建投资组合的混合方法:将两阶段集合预测模型与投资组合优化相结合
将股票预测与投资组合优化相结合可以提高投资组合构建的性能。本文提出了一种新颖的投资组合构建方法,即利用两阶段集合模型预测股票价格,并将预测结果与投资组合优化相结合。具体来说,该方法分为两个阶段:股票预测和投资组合优化。股票预测分为两个阶段。在第一阶段,使用三个神经网络,即多层感知器(MLP)、门控递归单元(GRU)和长短期记忆(LSTM),整合四个单独模型的预测结果,即 LSTM、GRU、深度多层感知器(DMLP)和随机森林(RF)。在第二阶段,利用时变权重普通最小二乘法模型(OLS)综合第一阶段的预测结果,得到最终的预测结果,然后选择潜在投资回报率较高的股票。在投资组合优化中,提出了一种名为 DMVF 的多元化均值-方差预测模型,其中考虑了平均预测误差项以获得超额收益,并引入了 2 正态成本函数以分散投资组合。以上海证券交易所的历史数据为研究样本,实验结果表明,两阶段集合预测的 DMVF 模型在收益和收益-风险特征方面优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric Synthetic Image Generation Using Deep Learning: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1