Lyotropic Liquid Crystals of Colloidal Gibbsite Nanoplatelets: Phase Transition, Kinetic Characterization, and Confinement Effect

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Particle & Particle Systems Characterization Pub Date : 2023-12-19 DOI:10.1002/ppsc.202300166
Le Gia Trung, Jin Seog Gwag, Shin-Woong Kang
{"title":"Lyotropic Liquid Crystals of Colloidal Gibbsite Nanoplatelets: Phase Transition, Kinetic Characterization, and Confinement Effect","authors":"Le Gia Trung, Jin Seog Gwag, Shin-Woong Kang","doi":"10.1002/ppsc.202300166","DOIUrl":null,"url":null,"abstract":"2D gibbsite nanoplatelets, [γ-Al(OH)<sub>3</sub>], are widely used as an inorganic mineral platform for 2D lyotropic liquid crystal (LC) colloids. These particles are synthesized and enlarged using an improved hydrolysis method, resulting in highly crystalline (96.5%), low polydispersity (15.1%), and readily dispersible colloids in water. The aqueous mesomorphic system is characterized for the isotropic-to-nematic phase transition by analyzing number density and shear viscosity. Thermal stability is assessed through thermogravimetric analysis. Additionally, kinetic and thermodynamic parameters for 2D gibbsite nanoparticles are determined for the first time using three models (Coats-Redfern, Friedman, and Kissinger). In particular, the activation and Gibbs free energies for the first dehydration stage of gibbsite yield ranges of 98‒128 kJ mol<sup>−1</sup> and 135‒161 kJ mol<sup>−1</sup>, respectively. To investigate the confinement effect of colloidal gibbsite-LCs, an isotropic gibbsite dispersion is introduced into a tube, leading to the uniform formation of gibbsite-LC layers along two distinct pathways: tangential to the liquid-air interface and as concentric circles along the tube walls. These findings offer valuable insights into potential applications, particularly in the domain of gas barrier inorganic films across various specialized fields.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202300166","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

2D gibbsite nanoplatelets, [γ-Al(OH)3], are widely used as an inorganic mineral platform for 2D lyotropic liquid crystal (LC) colloids. These particles are synthesized and enlarged using an improved hydrolysis method, resulting in highly crystalline (96.5%), low polydispersity (15.1%), and readily dispersible colloids in water. The aqueous mesomorphic system is characterized for the isotropic-to-nematic phase transition by analyzing number density and shear viscosity. Thermal stability is assessed through thermogravimetric analysis. Additionally, kinetic and thermodynamic parameters for 2D gibbsite nanoparticles are determined for the first time using three models (Coats-Redfern, Friedman, and Kissinger). In particular, the activation and Gibbs free energies for the first dehydration stage of gibbsite yield ranges of 98‒128 kJ mol−1 and 135‒161 kJ mol−1, respectively. To investigate the confinement effect of colloidal gibbsite-LCs, an isotropic gibbsite dispersion is introduced into a tube, leading to the uniform formation of gibbsite-LC layers along two distinct pathways: tangential to the liquid-air interface and as concentric circles along the tube walls. These findings offer valuable insights into potential applications, particularly in the domain of gas barrier inorganic films across various specialized fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶体吉布斯特纳米片的各向同性液晶:相变、动力学特性和致密效应
二维吉比特纳米颗粒[γ-Al(OH)3]被广泛用作二维各向同性液晶(LC)胶体的无机矿物平台。采用改进的水解方法合成并增大了这些颗粒,从而得到了高结晶度(96.5%)、低多分散性(15.1%)且易于在水中分散的胶体。通过分析数密度和剪切粘度,确定了水介形体系从各向同性到向线性相变的特征。热重分析评估了热稳定性。此外,利用三种模型(Coats-Redfern、Friedman 和 Kissinger)首次确定了二维吉布斯特纳米粒子的动力学和热力学参数。其中,吉布斯岩第一脱水阶段的活化能和吉布斯自由能分别为 98-128 kJ mol-1 和 135-161 kJ mol-1。为了研究胶体吉布斯特-LC 的约束效应,将各向同性的吉布斯特分散体引入管中,导致吉布斯特-LC 层沿着两条不同的路径均匀形成:与液-气界面相切的路径和沿着管壁形成同心圆的路径。这些发现为潜在应用提供了宝贵的见解,特别是在气体阻隔无机薄膜领域的各种专业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
期刊最新文献
Physical Crosslinking of Aqueous Polymer Dispersions: A Perspective Titania Doped CDs as Effective CT‐DNA Binders: A Novel Fluorescent Probe via Green Synthesis Fast In Situ Metal Deposition and Removal Under UV and Visible Light Using Polydopamine/TiO2 Composite Surface Cobalt Ferrite–Silica–Gold Nanocomposite: Synthesis, Structural Characterization, and Magneto‐Plasmonic Properties Positron Emission Tomography‐Assisted Photothermal Therapy with Gold Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1