{"title":"Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers?","authors":"Sourav Mondal, Sourish Ghosh","doi":"10.1007/s10571-023-01443-4","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-023-01443-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.