Estácio Jussie Odisi, Robert Cardoso de Freitas, Diego Serrasol do Amaral, Saulo Britto da Silva, Marcus Adonai Castro da Silva, William de Oliveira Sant Ana, André Oliveira de Souza Lima, Leonardo Rubi Rörig
{"title":"Metataxonomy of acid mine drainage microbiomes from the Santa Catarina Carboniferous Basin (Southern Brazil).","authors":"Estácio Jussie Odisi, Robert Cardoso de Freitas, Diego Serrasol do Amaral, Saulo Britto da Silva, Marcus Adonai Castro da Silva, William de Oliveira Sant Ana, André Oliveira de Souza Lima, Leonardo Rubi Rörig","doi":"10.1007/s00792-023-01324-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mining activities generate large quantities of wastes that significantly alter the biogeochemistry and ecological structure of entire river basins. Microbial communities that develop in these areas present a variety of survival and adaptation mechanisms. Knowing this diversity at the molecular level is strategic both for understanding adaptive processes and for identifying genomes with potential use in bioremediation and bioprospecting. In this work, prokaryotic and eukaryotic communities were evaluated by meta-taxonomics (16S and 18S amplicons) in sediments and water bodies impacted by acid mine drainage in an important coal mining area in southern Brazil. Five sampling stations were defined on a gradient of impacts (pH 2.7-4.25). Taxon diversity was directly proportional to pH, being greater in sediments than in water. The dominant prokaryotic phyla in the samples were Proteobacteria, Actinobacteria, Acidobacteria, OD1, Nitrospirae, and Euryarchaeota, and among the eukaryotes, algae (Ochrophyta, Chlorophyta, Cryptophyceae), fungi (Basidiomycota, Ascomycota, and Cryptomycota), and protists (Ciliophora, Heterolobosea, Cercozoa). The prokaryotic genera Leptospirillum, Acidithiobacillus, Acidiphilium, Thiomonas, Thermogymnomonas, and Acidobacterium, and the eukaryotic genera Pterocystis and Poteriospumella were associated with more acidic conditions and higher metal concentrations, while the prokaryotic genera Sediminibacterium, Gallionella Geothrix, and Geobacter were more abundant in transitional environments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01324-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Mining activities generate large quantities of wastes that significantly alter the biogeochemistry and ecological structure of entire river basins. Microbial communities that develop in these areas present a variety of survival and adaptation mechanisms. Knowing this diversity at the molecular level is strategic both for understanding adaptive processes and for identifying genomes with potential use in bioremediation and bioprospecting. In this work, prokaryotic and eukaryotic communities were evaluated by meta-taxonomics (16S and 18S amplicons) in sediments and water bodies impacted by acid mine drainage in an important coal mining area in southern Brazil. Five sampling stations were defined on a gradient of impacts (pH 2.7-4.25). Taxon diversity was directly proportional to pH, being greater in sediments than in water. The dominant prokaryotic phyla in the samples were Proteobacteria, Actinobacteria, Acidobacteria, OD1, Nitrospirae, and Euryarchaeota, and among the eukaryotes, algae (Ochrophyta, Chlorophyta, Cryptophyceae), fungi (Basidiomycota, Ascomycota, and Cryptomycota), and protists (Ciliophora, Heterolobosea, Cercozoa). The prokaryotic genera Leptospirillum, Acidithiobacillus, Acidiphilium, Thiomonas, Thermogymnomonas, and Acidobacterium, and the eukaryotic genera Pterocystis and Poteriospumella were associated with more acidic conditions and higher metal concentrations, while the prokaryotic genera Sediminibacterium, Gallionella Geothrix, and Geobacter were more abundant in transitional environments.