Local Administrations of Iron Oxide Nanoparticles in the Prefrontal Cortex and Caudate Putamen of Rats Do Not Compromise Working Memory and Motor Activity.

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neurotoxicity Research Pub Date : 2023-12-22 DOI:10.1007/s12640-023-00684-x
Ellen Irrsack, Sidar Aydin, Katja Bleckmann, Julia Schuller, Ralf Dringen, Michael Koch
{"title":"Local Administrations of Iron Oxide Nanoparticles in the Prefrontal Cortex and Caudate Putamen of Rats Do Not Compromise Working Memory and Motor Activity.","authors":"Ellen Irrsack, Sidar Aydin, Katja Bleckmann, Julia Schuller, Ralf Dringen, Michael Koch","doi":"10.1007/s12640-023-00684-x","DOIUrl":null,"url":null,"abstract":"<p><p>Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"6"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00684-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在大鼠前额叶皮层和尾状普门局部施用纳米氧化铁不会损害工作记忆和运动活动
氧化铁纳米粒子(IONPs)因其在医疗领域的应用而备受关注,但其对人类可能造成的健康风险,尤其是对大脑功能的影响,尚未完全明确。本研究调查了 IONP 对大鼠神经行为功能的影响。为此,我们将涂有二巯基丁二酸的 IONPs 注入内侧前额叶皮层(mPFC)和尾状核丘脑(CPu)。对照组为生理盐水(VEH)和柠檬酸铁铵(FAC)。手术后 1 周和 4 周,对注射了 mPFC 的大鼠进行了延迟交替 T 迷宫任务工作记忆能力测试和开阔地(OF)运动活动测试,对注射了 CPu 的大鼠进行了开阔地运动活动测试。实验结束后,对大鼠大脑进行了组织学和免疫组化检查。在 mPFC 和 CPu 中注射 IONPs 后,我们没有观察到大鼠出现任何行为或结构异常。相反,在 CPu 中注射 FAC 会导致运动活动减少,并增加 mPFC 中的小胶质细胞数量。珀尔斯普鲁士蓝染色显示,FAC和IONP处理的大鼠比VEH处理的大鼠有更多的含铁柱状细胞,这表明小胶质细胞摄取了铁。我们的研究结果表明,将 IONPs 局部注入选定的脑区不会对运动行为和工作记忆产生不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
期刊最新文献
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1