Brain Feature Extraction With an Artifact-Tolerant Multiplexed Time-Encoding Neural Frontend for True Real-Time Closed-Loop Neuromodulation

Marco Francesco Carlino;Georges Gielen
{"title":"Brain Feature Extraction With an Artifact-Tolerant Multiplexed Time-Encoding Neural Frontend for True Real-Time Closed-Loop Neuromodulation","authors":"Marco Francesco Carlino;Georges Gielen","doi":"10.1109/TBCAS.2023.3344889","DOIUrl":null,"url":null,"abstract":"Closed-loop neuromodulation is emerging as a more effective and targeted solution for the treatment of neurological symptoms compared to traditional open-loop stimulation. The majority of the present designs lack the ability to continuously record brain activity during electrical stimulation; hence they cannot fully monitor the treatment's effectiveness. This is due to the large stimulation artifacts that can saturate the sensitive readout circuits. To overcome this challenge, this work presents a rapid-artifact-recovery time-multiplexed neural readout frontend in combination with backend linear interpolation to reconstruct the artifact-corrupted local field potentials' (LFP) features. Our hybrid technique is an alternative approach to avoid power-hungry large-dynamic-range readout architectures or large and complex artifact template subtraction circuits. We discuss the design and measurements of a prototype implementation of the proposed readout frontend in 180-nm CMOS. It combines time multiplexing and time-domain conversion in a novel 13-bit incremental ADC, requiring only 0.0018 mm\n<sup>2</sup>\n/channel of readout area despite the large 180-nm CMOS process used, while consuming only 4.51 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nW/channel. This is the smallest reported area for stimulation-voltage-compatible technologies (i.e. \n<inline-formula><tex-math>$\\ge$</tex-math></inline-formula>\n 65 nm). The frontend also yields a best-in-class peak total harmonic distortion of −72.6 dB @2.5-mVpp input, thanks to its implicit DAC mismatch-error shaping property. We employ the chip to measure brain LFP signals corrupted with artifacts, then perform linear interpolation and feature extraction on the measured signals and evaluate the reconstruction quality, using a set of sixteen commonly used features and three stimulation scenarios. The results show relative accuracies above 95% with respect to the situation without artifacts. This work is an ideal candidate for integration in high-channel-count true closed-loop neuromodulation systems.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10366816/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Closed-loop neuromodulation is emerging as a more effective and targeted solution for the treatment of neurological symptoms compared to traditional open-loop stimulation. The majority of the present designs lack the ability to continuously record brain activity during electrical stimulation; hence they cannot fully monitor the treatment's effectiveness. This is due to the large stimulation artifacts that can saturate the sensitive readout circuits. To overcome this challenge, this work presents a rapid-artifact-recovery time-multiplexed neural readout frontend in combination with backend linear interpolation to reconstruct the artifact-corrupted local field potentials' (LFP) features. Our hybrid technique is an alternative approach to avoid power-hungry large-dynamic-range readout architectures or large and complex artifact template subtraction circuits. We discuss the design and measurements of a prototype implementation of the proposed readout frontend in 180-nm CMOS. It combines time multiplexing and time-domain conversion in a novel 13-bit incremental ADC, requiring only 0.0018 mm 2 /channel of readout area despite the large 180-nm CMOS process used, while consuming only 4.51 $\mu$ W/channel. This is the smallest reported area for stimulation-voltage-compatible technologies (i.e. $\ge$ 65 nm). The frontend also yields a best-in-class peak total harmonic distortion of −72.6 dB @2.5-mVpp input, thanks to its implicit DAC mismatch-error shaping property. We employ the chip to measure brain LFP signals corrupted with artifacts, then perform linear interpolation and feature extraction on the measured signals and evaluate the reconstruction quality, using a set of sixteen commonly used features and three stimulation scenarios. The results show relative accuracies above 95% with respect to the situation without artifacts. This work is an ideal candidate for integration in high-channel-count true closed-loop neuromodulation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用容错多路复用时间编码神经前端提取大脑特征,实现真正的实时闭环神经调制。
与传统的开环刺激疗法相比,闭环神经调控疗法正在成为一种更有效、更有针对性的神经症状治疗方案。目前的大多数设计都无法在电刺激过程中持续记录大脑活动,因此无法全面监测治疗效果。这是由于大量的刺激伪影会使灵敏的读出电路饱和。为了克服这一挑战,这项研究提出了一种快速伪影恢复时间多路复用神经读出前端,并结合后端线性插值来重建被伪影破坏的局部场电位(LFP)特征。我们的混合技术是避免高功耗大动态范围读出架构或大型复杂伪影模板减法电路的另一种方法。我们讨论了在 180-nm CMOS 上实现的读出前端原型的设计和测量。它在一个新颖的 13 位增量 ADC 中结合了时间多路复用和时域转换,尽管使用的是大型 180 纳米 CMOS 工艺,但只需要 0.0018 平方毫米/通道的读出面积,而功耗仅为 4.51 微瓦/通道。据报道,这是刺激电压兼容技术(即≥ 65 nm)中最小的面积。得益于其隐含的 DAC 失配误差整形特性,该前端在 2.5 mVpp 输入时的总谐波失真峰值达到了同类最佳的 -72.6 dB。我们使用该芯片测量被伪影干扰的大脑 LFP 信号,然后对测量信号进行线性插值和特征提取,并使用一组 16 个常用特征和三种刺激场景评估重建质量。结果显示,与无伪影情况相比,相对准确率超过 95%。这项工作是集成到高通道数真正闭环神经调控系统的理想候选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1