首页 > 最新文献

IEEE transactions on biomedical circuits and systems最新文献

英文 中文
2024 Index IEEE Transactions on Biomedical Circuits and Systems Vol. 18 2024索引IEEE生物医学电路和系统交易卷18
Pub Date : 2024-12-19 DOI: 10.1109/TBCAS.2024.3519932
{"title":"2024 Index IEEE Transactions on Biomedical Circuits and Systems Vol. 18","authors":"","doi":"10.1109/TBCAS.2024.3519932","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3519932","url":null,"abstract":"","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1385-1410"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10810376","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research with the World! techxiv:与世界分享你的预印本研究!
Pub Date : 2024-12-11 DOI: 10.1109/TBCAS.2024.3511193
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TBCAS.2024.3511193","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3511193","url":null,"abstract":"","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1382-1382"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
Pub Date : 2024-12-11 DOI: 10.1109/TBCAS.2024.3511176
{"title":"Blank Page","authors":"","doi":"10.1109/TBCAS.2024.3511176","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3511176","url":null,"abstract":"","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"C4-C4"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783941","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Biomedical Circuits and Systems Publication Information IEEE生物医学电路和系统汇刊信息
Pub Date : 2024-12-11 DOI: 10.1109/TBCAS.2024.3485302
{"title":"IEEE Transactions on Biomedical Circuits and Systems Publication Information","authors":"","doi":"10.1109/TBCAS.2024.3485302","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3485302","url":null,"abstract":"","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Together, We are advance technology 我们共同推动科技进步
Pub Date : 2024-12-11 DOI: 10.1109/TBCAS.2024.3511197
{"title":"Together, We are advance technology","authors":"","doi":"10.1109/TBCAS.2024.3511197","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3511197","url":null,"abstract":"","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1384-1384"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783940","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Circuits and Systems Society Information IEEE电路与系统学会信息
Pub Date : 2024-12-11 DOI: 10.1109/TBCAS.2024.3511174
{"title":"IEEE Circuits and Systems Society Information","authors":"","doi":"10.1109/TBCAS.2024.3511174","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3511174","url":null,"abstract":"","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Selected Papers From the 2024 IEEE International Solid-State Circuits Conference 特邀编辑:2024 年 IEEE 国际固态电路会议论文选
Pub Date : 2024-12-09 DOI: 10.1109/TBCAS.2024.3507312
Alison Burdett;Maysam Ghovanloo;Roman Genov;Mehdi Kiani
{"title":"Guest Editorial: Selected Papers From the 2024 IEEE International Solid-State Circuits Conference","authors":"Alison Burdett;Maysam Ghovanloo;Roman Genov;Mehdi Kiani","doi":"10.1109/TBCAS.2024.3507312","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3507312","url":null,"abstract":"","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1194-1196"},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783936","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation. 用于同时进行神经记录和光遗传刺激的高能效、抗伪原创 ASIC。
Pub Date : 2024-11-11 DOI: 10.1109/TBCAS.2024.3495652
Linran Zhao, Yan Gong, Raymond G Stephany, Wei Shi, Wen Li, Yaoyao Jia

This paper presents an application-specific integrated circuit (ASIC) fabricated using the CMOS 180 nm process to perform simultaneous neural recording and optogenetic stimulation. To perform effective optogenetic stimulation, the ASIC features an advanced switched-capacitor-based stimulation (SCS) driver, called voltage-boosting SCS (VB-SCS). The VB-SCS can drive LED with large current pulses up to 8 mA while reducing the required supply voltage by half, facilitating wireless power reception. To prevent saturation from stimulation-induced artifacts, the ASIC integrates a direct digitizing recording frontend with a high-resolution delta-sigma (ΔΣ) analog-to-digital converter (ADC) that directly digitizes neural signals with a large input dynamic range. This ΔΣ ADC involves a Gm-C integrator followed by a noise-shaping (NS) successive approximation register (SAR) quantizer. Measurement results indicate that this ΔΣ ADC-based direct digitizing frontend can tolerate large artifacts up to 300 mVPP while linearly digitizing neural signals with an effective number of bits (ENOB) of 11.4 bits, consuming 10.8 μW. The ASIC, together with its associated passive components, was assembled into a headstage for in vivo verification, successfully demonstrating the functionality of the ASIC.

本文介绍了一种采用 CMOS 180 纳米工艺制造的专用集成电路 (ASIC),可同时进行神经记录和光遗传刺激。为实现有效的光遗传刺激,ASIC 采用了先进的基于开关电容的刺激(SCS)驱动器,即电压增强型 SCS(VB-SCS)。VB-SCS 能以高达 8 mA 的大电流脉冲驱动 LED,同时将所需的电源电压降低一半,从而促进无线电源接收。为了防止刺激引起的假象造成饱和,ASIC 集成了一个直接数字化记录前端,带有一个高分辨率三角积分(ΔΣ)模数转换器 (ADC),可直接数字化输入动态范围大的神经信号。这种 ΔΣ ADC 包括一个 Gm-C 积分器和一个噪声整形(NS)逐次逼近寄存器(SAR)量化器。测量结果表明,这种基于 ΔΣ ADC 的直接数字化前端可容忍高达 300 mVPP 的大伪差,同时对神经信号进行线性数字化,有效位数 (ENOB) 为 11.4 位,功耗为 10.8 μW。ASIC 及其相关无源元件被组装到一个头台中进行体内验证,成功地展示了 ASIC 的功能。
{"title":"An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation.","authors":"Linran Zhao, Yan Gong, Raymond G Stephany, Wei Shi, Wen Li, Yaoyao Jia","doi":"10.1109/TBCAS.2024.3495652","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3495652","url":null,"abstract":"<p><p>This paper presents an application-specific integrated circuit (ASIC) fabricated using the CMOS 180 nm process to perform simultaneous neural recording and optogenetic stimulation. To perform effective optogenetic stimulation, the ASIC features an advanced switched-capacitor-based stimulation (SCS) driver, called voltage-boosting SCS (VB-SCS). The VB-SCS can drive LED with large current pulses up to 8 mA while reducing the required supply voltage by half, facilitating wireless power reception. To prevent saturation from stimulation-induced artifacts, the ASIC integrates a direct digitizing recording frontend with a high-resolution delta-sigma (ΔΣ) analog-to-digital converter (ADC) that directly digitizes neural signals with a large input dynamic range. This ΔΣ ADC involves a Gm-C integrator followed by a noise-shaping (NS) successive approximation register (SAR) quantizer. Measurement results indicate that this ΔΣ ADC-based direct digitizing frontend can tolerate large artifacts up to 300 mV<sub>PP</sub> while linearly digitizing neural signals with an effective number of bits (ENOB) of 11.4 bits, consuming 10.8 μW. The ASIC, together with its associated passive components, was assembled into a headstage for in vivo verification, successfully demonstrating the functionality of the ASIC.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics 液滴微流体中的集成实时 CMOS 发光传感和阻抗光谱技术
Pub Date : 2024-11-07 DOI: 10.1109/TBCAS.2024.3491594
Qijun Liu;Diana Arguijo Mendoza;Alperen Yasar;Dilara Caygara;Aya Kassem;Douglas Densmore;Rabia Tugce Yazicigil
High-throughput biosensor screening and optimization are critical for health and environmental monitoring applications to ensure rapid and accurate detection of biological and chemical targets. Traditional biosensor design and optimization methods involve labor-intensive processes, such as manual pipetting of large sample volumes, making them low throughput and inefficient for large-scale library screenings under various environmental and chemical conditions. We address these challenges by introducing a modular droplet microfluidic system embedded with custom CMOS integrated circuits (ICs) for impedance spectroscopy and bioluminescence detection. Fabricated in a 65 nm process, our CMOS ICs enable efficient droplet detection and analysis. We demonstrate successful sensing of luciferase enzyme-substrate reactions in nL-volume droplets. The impedance spectroscopy chip detects 4 nL droplets at 67 mm/s with a 45 pA resolution, while the luminescence detector senses optical signals from 38 nL droplets with a 6.7 nA/count resolution. We show real-time concurrent use of both detection methods within our hybrid platform for cross-validation. This system greatly advances conventional biosensor testing by increasing flexibility, scalability, and cost-efficiency.
高通量生物传感器筛选和优化对于健康和环境监测应用至关重要,可确保快速准确地检测生物和化学目标。传统的生物传感器设计和优化方法涉及劳动密集型过程,如手动移取大量样品,因此在各种环境和化学条件下进行大规模文库筛选时通量低、效率低。为了应对这些挑战,我们推出了嵌入定制 CMOS 集成电路 (IC) 的模块化液滴微流控系统,用于阻抗光谱和生物发光检测。我们的 CMOS 集成电路采用 65 纳米工艺制造,可实现高效的液滴检测和分析。我们展示了在 nL 容积液滴中对荧光素酶酶-底物反应的成功传感。阻抗光谱芯片以 67 mm/s 的速度检测 4 nL 液滴,分辨率为 45 pA,而发光检测器则以 6.7 nA/count 的分辨率检测来自 38 nL 液滴的光信号。我们展示了在混合平台中同时使用两种检测方法进行交叉验证的实时情况。通过提高灵活性、可扩展性和成本效益,该系统极大地推动了传统生物传感器测试的发展。
{"title":"Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics","authors":"Qijun Liu;Diana Arguijo Mendoza;Alperen Yasar;Dilara Caygara;Aya Kassem;Douglas Densmore;Rabia Tugce Yazicigil","doi":"10.1109/TBCAS.2024.3491594","DOIUrl":"10.1109/TBCAS.2024.3491594","url":null,"abstract":"High-throughput biosensor screening and optimization are critical for health and environmental monitoring applications to ensure rapid and accurate detection of biological and chemical targets. Traditional biosensor design and optimization methods involve labor-intensive processes, such as manual pipetting of large sample volumes, making them low throughput and inefficient for large-scale library screenings under various environmental and chemical conditions. We address these challenges by introducing a modular droplet microfluidic system embedded with custom CMOS integrated circuits (ICs) for impedance spectroscopy and bioluminescence detection. Fabricated in a 65 nm process, our CMOS ICs enable efficient droplet detection and analysis. We demonstrate successful sensing of luciferase enzyme-substrate reactions in nL-volume droplets. The impedance spectroscopy chip detects 4 nL droplets at 67 mm/s with a 45 pA resolution, while the luminescence detector senses optical signals from 38 nL droplets with a 6.7 nA/count resolution. We show real-time concurrent use of both detection methods within our hybrid platform for cross-validation. This system greatly advances conventional biosensor testing by increasing flexibility, scalability, and cost-efficiency.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1233-1252"},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. 基于动态子阵列选择的高能效定位和跟踪方法,利用超声波为散射异质介质中的植入式医疗设备供电。
Pub Date : 2024-11-04 DOI: 10.1109/TBCAS.2024.3487782
Anirudh Kumar Parag, Bogdan C Raducanu, Oguz Kaan Erden, Stefano Stanzione, Fabian Beutel, Chinmay Pendse, Chris Van Hoof, Nick Van Helleputte, Georges Gielen

Ultrasound (US) as a wireless power transfer methodology has drawn considerable attention from the implantable medical devices (IMD) research community. Beamforming (BF) using an external transducer array patch (ETAP) has been proposed as a robust localization scheme to find a mm-sized IMD inside the human body. However, for applications focusing on deep and shallow IMDs, optimum resource utilization at the ETAP is a major power efficiency concern for energy-constrained wearable patches. Moreover, misalignment tolerance due to IMD movements (respiratory and patient ambulatory reasons) relative to the ETAP remains a challenge. This paper presents an energy-efficient method to localize a mm-sized IMD through the dynamic selection of a sub-array within the ETAP. It is fully adaptive to the heterogeneity of the media and requires no a priori knowledge of the IMD. To improve the tolerance to IMD movements, tracking is implemented by adding and subtracting elements on the sub-array such that the sub-array electrically follows the IMD movement. Furthermore, it is shown that a minimum sampling frequency of 10X the US frequency can improve the tolerance to random noise. K-wave simulations in MATLAB are performed in different heterogenous, scattering biological media to prove the efficacy of the proposed method over standard BF methods. Measurement results in heterogenous scattering media consisting of a 3D-printed human ribs phantom and a partially blocking multipath cancellous bone phantom show an energy efficiency improvement of 10.53X and 14.4X compared to the delay-and-sum beamforming method and the unfocused transmission employing all the elements of the ETAP, respectively.

超声波(US)作为一种无线功率传输方法,已经引起了植入式医疗设备(IMD)研究界的极大关注。有人提出使用外部换能器阵列贴片(ETAP)进行波束成形(BF),作为一种稳健的定位方案,在人体内找到毫米大小的 IMD。然而,对于以深层和浅层 IMD 为重点的应用而言,ETAP 的最佳资源利用是能源受限的可穿戴贴片所关注的主要能效问题。此外,由于 IMD 相对于 ETAP 的移动(呼吸和患者活动原因)而导致的错位容差仍然是一个挑战。本文提出了一种高能效方法,通过在 ETAP 内动态选择子阵列来定位毫米大小的 IMD。该方法完全适应媒体的异质性,并且不需要 IMD 的先验知识。为了提高对 IMD 移动的耐受性,通过添加和减少子阵列上的元素来实现跟踪,从而使子阵列在电气上跟随 IMD 移动。此外,研究还表明,10 倍于 US 频率的最低采样频率可提高对随机噪声的耐受性。在 MATLAB 中对不同的异质散射生物介质进行了 K 波模拟,以证明所提议的方法比标准 BF 方法更有效。在由 3D 打印人体肋骨模型和部分阻塞多径松质骨模型组成的异质散射介质中的测量结果表明,与采用 ETAP 所有元素的延迟和波束成形方法和非聚焦传输相比,能量效率分别提高了 10.53 倍和 14.4 倍。
{"title":"Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound.","authors":"Anirudh Kumar Parag, Bogdan C Raducanu, Oguz Kaan Erden, Stefano Stanzione, Fabian Beutel, Chinmay Pendse, Chris Van Hoof, Nick Van Helleputte, Georges Gielen","doi":"10.1109/TBCAS.2024.3487782","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3487782","url":null,"abstract":"<p><p>Ultrasound (US) as a wireless power transfer methodology has drawn considerable attention from the implantable medical devices (IMD) research community. Beamforming (BF) using an external transducer array patch (ETAP) has been proposed as a robust localization scheme to find a mm-sized IMD inside the human body. However, for applications focusing on deep and shallow IMDs, optimum resource utilization at the ETAP is a major power efficiency concern for energy-constrained wearable patches. Moreover, misalignment tolerance due to IMD movements (respiratory and patient ambulatory reasons) relative to the ETAP remains a challenge. This paper presents an energy-efficient method to localize a mm-sized IMD through the dynamic selection of a sub-array within the ETAP. It is fully adaptive to the heterogeneity of the media and requires no a priori knowledge of the IMD. To improve the tolerance to IMD movements, tracking is implemented by adding and subtracting elements on the sub-array such that the sub-array electrically follows the IMD movement. Furthermore, it is shown that a minimum sampling frequency of 10X the US frequency can improve the tolerance to random noise. K-wave simulations in MATLAB are performed in different heterogenous, scattering biological media to prove the efficacy of the proposed method over standard BF methods. Measurement results in heterogenous scattering media consisting of a 3D-printed human ribs phantom and a partially blocking multipath cancellous bone phantom show an energy efficiency improvement of 10.53X and 14.4X compared to the delay-and-sum beamforming method and the unfocused transmission employing all the elements of the ETAP, respectively.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE transactions on biomedical circuits and systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1