{"title":"A brief study on heavy metal resistance genes from 10 genomes of Georgenia sp. and In vitro confirmation on Georgenia sp. SUBG003","authors":"Tejas Oza , Pooja Patel , Vrinda S. Thaker","doi":"10.1016/j.hazl.2023.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metal pollution is consistently a critical issue in many parts of the world, affecting living systems remarkably. Many microorganisms possess such toxic metals utilizing capacities that can be explored for remediation. The present study demonstrates a comparative analysis of Mercury (Hg), Lead (Pb), Cobalt (Co), Zinc (Zn), and Magnesium (Mg) resistance genes in genomes of 11 different <em>Georgenia sps.</em> and confirmation of this gene pool in <em>Georgenia sp</em>. <em>SUBG003</em> by growth on HgCl<sub>2,</sub> CdCl<sub>2,</sub> CoCl<sub>2,</sub> and ZnCl<sub>2</sub> with varying concentrations and periods of up to 144hrs in a liquid medium and on a solid medium. Over a period HgCl<sub>2</sub> initial concentrations 0.01 mM, 0.03 mM, and 0.05 mM showed controlled growth, at interim concentrations of 0.07 mM, 0.09 mM were found to be an interim effect while 0.11 mM, 0.13 mM and 0.15 mM higher concentrations showed increased growth. While CdCl<sub>2,</sub> CoCl<sub>2,</sub> and ZnCl<sub>2</sub> showed growth inhibition upon increasing concentration from 0.01 mM to 0.5 mM. The concentrations tested are in a higher range than the polluted sources observed and the probable role in remediation is discussed.</p></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"5 ","pages":"Article 100097"},"PeriodicalIF":6.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666911023000230/pdfft?md5=aaba4d3e16e515fbbe1925431a24cbf1&pid=1-s2.0-S2666911023000230-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911023000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal pollution is consistently a critical issue in many parts of the world, affecting living systems remarkably. Many microorganisms possess such toxic metals utilizing capacities that can be explored for remediation. The present study demonstrates a comparative analysis of Mercury (Hg), Lead (Pb), Cobalt (Co), Zinc (Zn), and Magnesium (Mg) resistance genes in genomes of 11 different Georgenia sps. and confirmation of this gene pool in Georgenia sp. SUBG003 by growth on HgCl2, CdCl2, CoCl2, and ZnCl2 with varying concentrations and periods of up to 144hrs in a liquid medium and on a solid medium. Over a period HgCl2 initial concentrations 0.01 mM, 0.03 mM, and 0.05 mM showed controlled growth, at interim concentrations of 0.07 mM, 0.09 mM were found to be an interim effect while 0.11 mM, 0.13 mM and 0.15 mM higher concentrations showed increased growth. While CdCl2, CoCl2, and ZnCl2 showed growth inhibition upon increasing concentration from 0.01 mM to 0.5 mM. The concentrations tested are in a higher range than the polluted sources observed and the probable role in remediation is discussed.