Mutual aid instead of mutual restraint: interactive probing for topological charge and phase of a vortex beam of large aberrations

IF 6.6 1区 物理与天体物理 Q1 OPTICS Photonics Research Pub Date : 2023-12-22 DOI:10.1364/prj.498502
Shengyang Wu, Benli Yu, and Lei Zhang
{"title":"Mutual aid instead of mutual restraint: interactive probing for topological charge and phase of a vortex beam of large aberrations","authors":"Shengyang Wu, Benli Yu, and Lei Zhang","doi":"10.1364/prj.498502","DOIUrl":null,"url":null,"abstract":"An imperfect propagation environment or optical system would introduce wavefront aberrations to vortex beams. The phase aberrations and orbital angular momentum in a vortex beam are proved to be mutually restrictive in parameter measurement. Aberrations make traditional topological charge (TC) probing methods ineffective while the phase singularity makes phase retrieval difficult due to the aliasing between the wrapped phase jump and the vortex phase jump. An interactive probing method is proposed to make measurements of the aberrated phase and orbital angular momentum in a vortex beam assist rather than hinder each other. The phase unwrapping is liberated from the phase singularity by an annular shearing interference technique while the TC value is determined by a Moiré technique immune to aberrations. Simulation and experimental results proving the method effective are presented. It is of great significance to judge the characteristics of vortex beams passing through non-ideal environments and optical systems.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"26 8 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.498502","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An imperfect propagation environment or optical system would introduce wavefront aberrations to vortex beams. The phase aberrations and orbital angular momentum in a vortex beam are proved to be mutually restrictive in parameter measurement. Aberrations make traditional topological charge (TC) probing methods ineffective while the phase singularity makes phase retrieval difficult due to the aliasing between the wrapped phase jump and the vortex phase jump. An interactive probing method is proposed to make measurements of the aberrated phase and orbital angular momentum in a vortex beam assist rather than hinder each other. The phase unwrapping is liberated from the phase singularity by an annular shearing interference technique while the TC value is determined by a Moiré technique immune to aberrations. Simulation and experimental results proving the method effective are presented. It is of great significance to judge the characteristics of vortex beams passing through non-ideal environments and optical systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
互助而非相互制约:大畸变涡束拓扑电荷和相位的交互探测
不完美的传播环境或光学系统会给涡旋光束带来波前像差。事实证明,旋涡光束中的相位差和轨道角动量在参数测量中相互制约。畸变使传统的拓扑电荷(TC)探测方法失效,而相位奇异性则由于包裹相位跃迁和涡旋相位跃迁之间的混叠而使相位检索变得困难。我们提出了一种交互式探测方法,使涡流束中的畸变相位和轨道角动量的测量相互辅助,而不是相互阻碍。通过环形剪切干涉技术将相位解包从相位奇异性中解脱出来,而角动量值则通过不受畸变影响的莫伊里技术确定。仿真和实验结果证明了该方法的有效性。这对于判断通过非理想环境和光学系统的涡旋光束的特性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.60
自引率
5.30%
发文量
1325
期刊介绍: Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.
期刊最新文献
All-optical nanoscale thermometry with silicon carbide color centers Tunnel silicon nitride manipulated reconfigurable bi-mode nociceptor analog High-order Autler–Townes splitting in electrically tunable photonic molecules Non-destructive electroluminescence inspection for LED epitaxial wafers based on soft single-contact operation Low-modal-crosstalk doped-fiber amplifiers in few-mode-fiber-based systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1