{"title":"Projective oblique plane structured illumination microscopy","authors":"Bo-Jui Chang, Douglas Shepherd, Reto Fiolka","doi":"10.1038/s44303-023-00002-2","DOIUrl":null,"url":null,"abstract":"Structured illumination microscopy (SIM) can double the spatial resolution of a fluorescence microscope and video rate live cell imaging in a two-dimensional format has been demonstrated. However, rapid implementations of 2D SIM typically only cover a narrow slice of the sample immediately at the coverslip, with most of the cellular volume out of reach. Here, we implement oblique plane structured illumination microscopy (OPSIM) in a projection format to rapidly image an entire cell in a 2D SIM framework. As no mechanical scanning of the sample or objective is involved, this technique has the potential for rapid projection imaging with doubled resolution. We characterize the spatial resolution with fluorescent nanospheres, compare projection and 3D imaging using OPSIM and image mitochondria and ER dynamics across an entire cell at up to 2.7 Hz. To our knowledge, this represents the fastest whole cell SIM imaging to date.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-023-00002-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-023-00002-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Structured illumination microscopy (SIM) can double the spatial resolution of a fluorescence microscope and video rate live cell imaging in a two-dimensional format has been demonstrated. However, rapid implementations of 2D SIM typically only cover a narrow slice of the sample immediately at the coverslip, with most of the cellular volume out of reach. Here, we implement oblique plane structured illumination microscopy (OPSIM) in a projection format to rapidly image an entire cell in a 2D SIM framework. As no mechanical scanning of the sample or objective is involved, this technique has the potential for rapid projection imaging with doubled resolution. We characterize the spatial resolution with fluorescent nanospheres, compare projection and 3D imaging using OPSIM and image mitochondria and ER dynamics across an entire cell at up to 2.7 Hz. To our knowledge, this represents the fastest whole cell SIM imaging to date.