DNA Nanostructures as Catalysts: Double Crossover Tile-Assisted 5′ to 5′ and 3′ to 3′ Chemical Ligation of Oligonucleotides

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Bioconjugate Pub Date : 2023-12-22 DOI:10.1021/acs.bioconjchem.3c00502
Andrea C. Bardales, Joseph R. Mills and Dmitry M. Kolpashchikov*, 
{"title":"DNA Nanostructures as Catalysts: Double Crossover Tile-Assisted 5′ to 5′ and 3′ to 3′ Chemical Ligation of Oligonucleotides","authors":"Andrea C. Bardales,&nbsp;Joseph R. Mills and Dmitry M. Kolpashchikov*,&nbsp;","doi":"10.1021/acs.bioconjchem.3c00502","DOIUrl":null,"url":null,"abstract":"<p >Accessibility of synthetic oligonucleotides and the success of DNA nanotechnology open a possibility to use DNA nanostructures for building sophisticated enzyme-like catalytic centers. Here we used a double DNA crossover (DX) tile nanostructure to enhance the rate, the yield, and the specificity of 5′–5′ ligation of two oligonucleotides with arbitrary sequences. The ligation product was isolated via a simple procedure. The same strategy was applied for the synthesis of 3′–3′ linked oligonucleotides, thus introducing a synthetic route to DNA and RNA with a switched orientation that is affordable by a low-resource laboratory. To emphasize the utility of the ligation products, we synthesized a circular structure formed from intramolecular complementarity that we named “an impossible DNA wheel” since it cannot be built from regular DNA strands by enzymatic reactions. Therefore, DX-tile nanostructures can open a route to producing useful chemical products that are unattainable via enzymatic synthesis. This is the first example of the use of DNA nanostructures as a catalyst. This study advocates for further exploration of DNA nanotechnology for building enzyme-like reactive systems.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00502","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Accessibility of synthetic oligonucleotides and the success of DNA nanotechnology open a possibility to use DNA nanostructures for building sophisticated enzyme-like catalytic centers. Here we used a double DNA crossover (DX) tile nanostructure to enhance the rate, the yield, and the specificity of 5′–5′ ligation of two oligonucleotides with arbitrary sequences. The ligation product was isolated via a simple procedure. The same strategy was applied for the synthesis of 3′–3′ linked oligonucleotides, thus introducing a synthetic route to DNA and RNA with a switched orientation that is affordable by a low-resource laboratory. To emphasize the utility of the ligation products, we synthesized a circular structure formed from intramolecular complementarity that we named “an impossible DNA wheel” since it cannot be built from regular DNA strands by enzymatic reactions. Therefore, DX-tile nanostructures can open a route to producing useful chemical products that are unattainable via enzymatic synthesis. This is the first example of the use of DNA nanostructures as a catalyst. This study advocates for further exploration of DNA nanotechnology for building enzyme-like reactive systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为催化剂的 DNA 纳米结构:双交叉瓦片辅助寡核苷酸的 5' 到 5' 和 3' 到 3' 化学连接。
合成寡核苷酸的可获得性和 DNA 纳米技术的成功为利用 DNA 纳米结构构建复杂的酶催化中心提供了可能。在这里,我们使用双 DNA 交叉(DX)瓦片纳米结构来提高任意序列的两个寡核苷酸的 5'-5' 连接速率、产量和特异性。通过简单的程序就能分离出连接产物。同样的策略也应用于 3'-3' 连接的寡核苷酸的合成,从而为 DNA 和 RNA 的合成引入了一条方向可调的途径,而且资源匮乏的实验室也能负担得起。为了强调连接产物的实用性,我们合成了一种由分子内互补形成的环状结构,并将其命名为 "不可能的 DNA 轮",因为它无法通过酶促反应从常规 DNA 链构建而成。因此,DX-tile 纳米结构可以为生产酶合成无法实现的有用化学产品开辟一条途径。这是利用 DNA 纳米结构作为催化剂的首个实例。这项研究提倡进一步探索 DNA 纳米技术,以构建类似酶的反应系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Equimolar Cross-Coupling Using Reactive Coiled Coils for Covalent Protein Assemblies. Identification of a Novel Transasparaginase Activity of Bacillus subtilis (bTG) for Sequence-Specific Bioconjugation. Linker and Conjugation Site Synergy in Antibody-Drug Conjugates: Impacts on Biological Activity. Poly(malic acid) Nanoconjugates of Pyrazinoic Acid for Lung Delivery in the Treatment of Tuberculosis. Tyrosinase-Mediated Conjugation for Antigen Display on Ferritin Nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1