Rapid-release reversible bonding of PMMA-based microfluidic devices with PBMA coating

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2023-12-23 DOI:10.1007/s10544-023-00690-y
Yusheng Li, Fan Xu, Jing liu, Qi Zhang, Yiqiang Fan
{"title":"Rapid-release reversible bonding of PMMA-based microfluidic devices with PBMA coating","authors":"Yusheng Li,&nbsp;Fan Xu,&nbsp;Jing liu,&nbsp;Qi Zhang,&nbsp;Yiqiang Fan","doi":"10.1007/s10544-023-00690-y","DOIUrl":null,"url":null,"abstract":"<div><p>PMMA-based microfluidics have been widely used in various applications in biological and chemical fields. In the fabrication process of PMMA-based microfluidics, the substrate and cover plate usually need to be bonded to enclose the microchannel. The bonding process could be permanent or reversible. In some application scenarios, reversible bonding is needed to retrieve the samples inside the channel or reuse the chip. Current reversible bonding methods for PMMA-based microfluidics usually have drawbacks on bonding strength and contaminations from the adhesives used in the bonding process. In this study, a new approach is proposed for the reversible bonding of PMMA-based microfluidics, a layer of PBMA (with a very similar structure to PMMA) was coated on the surface of PMMA and then use the thermal fusion method to achieve the bonding with a high bonding strength, a tensile bonding strength of around 0.8 MPa was achieved. For debond process, a rapid temperature drop will trigger the immediate release of the bonding within several seconds. Detailed bonding strength measurement and biocompatibility tests were also conducted in this study. The proposed bonding method could have wide application potential in the fabrication of PMMA-based microfluidics.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00690-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

PMMA-based microfluidics have been widely used in various applications in biological and chemical fields. In the fabrication process of PMMA-based microfluidics, the substrate and cover plate usually need to be bonded to enclose the microchannel. The bonding process could be permanent or reversible. In some application scenarios, reversible bonding is needed to retrieve the samples inside the channel or reuse the chip. Current reversible bonding methods for PMMA-based microfluidics usually have drawbacks on bonding strength and contaminations from the adhesives used in the bonding process. In this study, a new approach is proposed for the reversible bonding of PMMA-based microfluidics, a layer of PBMA (with a very similar structure to PMMA) was coated on the surface of PMMA and then use the thermal fusion method to achieve the bonding with a high bonding strength, a tensile bonding strength of around 0.8 MPa was achieved. For debond process, a rapid temperature drop will trigger the immediate release of the bonding within several seconds. Detailed bonding strength measurement and biocompatibility tests were also conducted in this study. The proposed bonding method could have wide application potential in the fabrication of PMMA-based microfluidics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 PMMA 的微流控设备与 PBMA 涂层的快速释放可逆粘接。
基于 PMMA 的微流控技术已广泛应用于生物和化学领域的各种应用。在基于 PMMA 的微流控芯片的制造过程中,通常需要将基板和盖板粘合在一起,以封闭微通道。粘合过程可以是永久性的,也可以是可逆的。在某些应用场景中,需要使用可逆键合来取回通道内的样品或重复使用芯片。目前用于基于 PMMA 的微流控芯片的可逆键合方法通常在键合强度和键合过程中使用的粘合剂污染方面存在缺陷。本研究为基于 PMMA 的微流控芯片的可逆键合提出了一种新方法,即在 PMMA 表面涂上一层 PBMA(与 PMMA 的结构非常相似),然后使用热熔方法实现高键合强度的键合,达到约 0.8 兆帕的拉伸键合强度。在脱粘过程中,温度的急剧下降会在几秒钟内触发粘合剂的立即释放。本研究还进行了详细的粘合强度测量和生物相容性测试。所提出的粘合方法在基于 PMMA 的微流控芯片制造中具有广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Research and development of microenvironment's influence on stem cells from the apical papilla - construction of novel research microdevices: tooth-on-a-chip. A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion. Biocompatible Janus microparticle synthesis in a microfluidic device. Flexible electronics for heavy metal ion detection in water: a comprehensive review. 3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1