Transcriptome sequencing analysis of bovine mammary epithelial cells induced by lipopolysaccharide.

IF 1.7 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Biotechnology Pub Date : 2024-11-01 Epub Date: 2023-12-23 DOI:10.1080/10495398.2023.2290527
Jingjing Liu, Yingkui Gao, Xing Zhang, Zhonghua Hao, Huaqiang Zhang, Rong Gui, Fang Liu, Chao Tong, Xuebing Wang
{"title":"Transcriptome sequencing analysis of bovine mammary epithelial cells induced by lipopolysaccharide.","authors":"Jingjing Liu, Yingkui Gao, Xing Zhang, Zhonghua Hao, Huaqiang Zhang, Rong Gui, Fang Liu, Chao Tong, Xuebing Wang","doi":"10.1080/10495398.2023.2290527","DOIUrl":null,"url":null,"abstract":"<p><p>Mastitis in cows is caused by the inflammation of the mammary glands due to an infection by external pathogenic bacteria. Mammary gland epithelial cells, which are in direct contact with the external environment, are responsible for the first line of defense of the mammary gland against pathogenic bacteria, playing an essential role in immune defense. To investigate the mechanism of bovine mammary epithelial cells in the inflammatory process, we treated the cells with LPS for 12 hours and analyzed the changes in mRNA by transcriptome sequencing. The results showed that compared to the control group, the LPS treatment group had 121 up-regulated genes and 18 down-regulated genes. GO and KEGG enrichment analysis revealed that these differential genes were mainly enriched in the IL-17 signaling pathway, Legionellosis, Cytokine-cytokine receptor interaction, NF-kappa B signaling pathway, and other signaling pathways. Furthermore, the expression of GRO1 and CXCL3 mRNAs increased significantly after LPS treatment. These findings provide new insights for the treatment of mastitis in cows in the future.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2023.2290527","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mastitis in cows is caused by the inflammation of the mammary glands due to an infection by external pathogenic bacteria. Mammary gland epithelial cells, which are in direct contact with the external environment, are responsible for the first line of defense of the mammary gland against pathogenic bacteria, playing an essential role in immune defense. To investigate the mechanism of bovine mammary epithelial cells in the inflammatory process, we treated the cells with LPS for 12 hours and analyzed the changes in mRNA by transcriptome sequencing. The results showed that compared to the control group, the LPS treatment group had 121 up-regulated genes and 18 down-regulated genes. GO and KEGG enrichment analysis revealed that these differential genes were mainly enriched in the IL-17 signaling pathway, Legionellosis, Cytokine-cytokine receptor interaction, NF-kappa B signaling pathway, and other signaling pathways. Furthermore, the expression of GRO1 and CXCL3 mRNAs increased significantly after LPS treatment. These findings provide new insights for the treatment of mastitis in cows in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对脂多糖诱导的牛乳腺上皮细胞进行转录组测序分析。
奶牛乳腺炎是由外部致病菌感染引起的乳腺炎症。乳腺上皮细胞与外界环境直接接触,是乳腺抵御病原菌的第一道防线,在免疫防御中起着至关重要的作用。为了研究牛乳腺上皮细胞在炎症过程中的作用机制,我们用 LPS 处理细胞 12 小时,并通过转录组测序分析其 mRNA 的变化。结果显示,与对照组相比,LPS处理组有121个基因上调,18个基因下调。GO和KEGG富集分析显示,这些差异基因主要富集在IL-17信号通路、军团菌病、细胞因子-细胞因子受体相互作用、NF-kappa B信号通路和其他信号通路中。此外,经 LPS 处理后,GRO1 和 CXCL3 mRNA 的表达量明显增加。这些发现为今后治疗奶牛乳腺炎提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Biotechnology
Animal Biotechnology 工程技术-奶制品与动物科学
CiteScore
2.90
自引率
5.40%
发文量
230
审稿时长
>12 weeks
期刊介绍: Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology. Submissions on the following topics are particularly welcome: - Applied microbiology, immunogenetics and antibiotic resistance - Genome engineering and animal models - Comparative genomics - Gene editing and CRISPRs - Reproductive biotechnologies - Synthetic biology and design of new genomes
期刊最新文献
Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with FecB++ genotype. Evaluation the effect of dietary vitamin E, sesamin and thymoquinone bioactive compounds on immunological response, intestinal traits and MUC-2 gene expression in broiler Japanese quails (Coturnix japonica). Deciphering the miRNA transcriptome of granulosa cells from dominant and subordinate follicles at first follicular wave in goat. Effect of alfalfa supplementary change dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) ratio on rumen fermentation and microbial function in Gansu alpine fine wool sheep (Ovis aries). Effects of JUNCAO Ganoderma lucidum polysaccharide peptide on slaughter performance and intestinal health of Minxinan black rabbits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1