Kevin Farries, Matthew Baldock, James Thompson, Christopher Stokes, Carolyn A Unsworth
{"title":"Entrapment and extraction of wheelchairs at flange gaps with and without flange gap fillers at pedestrian railway crossings.","authors":"Kevin Farries, Matthew Baldock, James Thompson, Christopher Stokes, Carolyn A Unsworth","doi":"10.1080/17483107.2023.2296954","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Where pedestrian crossings meet rail tracks, a flange gap allows the train wheel flanges to pass. This gap can be hazardous for wheelchair users as castor wheels may become trapped. While compressible gap fillers can eliminate the flange gap, fillers are subject to wear, pose a derailment hazard to light rail vehicles and can strip grease from passing wheels. These issues could be mitigated by partially filling the flange gap with a compressible filler. The aim was to investigate the risk of entrapment and ease of extraction of wheelchair castors from flange gaps fully and partially filled with compressible fillers, and assess ride quality.</p><p><strong>Materials and methods: </strong>Entrapment risk and ease of extraction for four wheelchairs were tested at various crossing angles with flange gap fillers. Twelve wheelchair users tested ease of extraction and ride quality for partially and fully filled flange gaps.</p><p><strong>Results: </strong>It was found that risk of entrapment is low if a standards-compliant crossing with open flange gaps is traversed in a straight line. However, castors can become trapped if the user alters direction to avoid an obstacle or if the crossing surface is uneven. Once trapped, castors are extremely difficult to remove without external assistance.</p><p><strong>Conclusions: </strong>Flange gap fillers that reduce the gap to 10 mm or less eliminate entrapment while retaining acceptable ride quality. Filling flange gaps or leaving a residual gap depth of less than 10 mm is the best option to eliminate risk of entrapment and ensure good ride quality for wheelchair users.IMPLICATIONS FOR REHABILITATIONRail crossings flange gaps pose an entrapment hazard for wheelchair usersPartial or complete flange gap fillers may reduce entrapment but require researchRehabilitation professionals need to educate wheelchair users on techniques to cross flange gaps safelyConsumers and health professionals can consult rail operators to partially fill flange gaps.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17483107.2023.2296954","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Where pedestrian crossings meet rail tracks, a flange gap allows the train wheel flanges to pass. This gap can be hazardous for wheelchair users as castor wheels may become trapped. While compressible gap fillers can eliminate the flange gap, fillers are subject to wear, pose a derailment hazard to light rail vehicles and can strip grease from passing wheels. These issues could be mitigated by partially filling the flange gap with a compressible filler. The aim was to investigate the risk of entrapment and ease of extraction of wheelchair castors from flange gaps fully and partially filled with compressible fillers, and assess ride quality.
Materials and methods: Entrapment risk and ease of extraction for four wheelchairs were tested at various crossing angles with flange gap fillers. Twelve wheelchair users tested ease of extraction and ride quality for partially and fully filled flange gaps.
Results: It was found that risk of entrapment is low if a standards-compliant crossing with open flange gaps is traversed in a straight line. However, castors can become trapped if the user alters direction to avoid an obstacle or if the crossing surface is uneven. Once trapped, castors are extremely difficult to remove without external assistance.
Conclusions: Flange gap fillers that reduce the gap to 10 mm or less eliminate entrapment while retaining acceptable ride quality. Filling flange gaps or leaving a residual gap depth of less than 10 mm is the best option to eliminate risk of entrapment and ensure good ride quality for wheelchair users.IMPLICATIONS FOR REHABILITATIONRail crossings flange gaps pose an entrapment hazard for wheelchair usersPartial or complete flange gap fillers may reduce entrapment but require researchRehabilitation professionals need to educate wheelchair users on techniques to cross flange gaps safelyConsumers and health professionals can consult rail operators to partially fill flange gaps.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.