Analysing volatility patterns in emerging markets: symmetric or asymmetric models?

Himani Gupta
{"title":"Analysing volatility patterns in emerging markets: symmetric or asymmetric models?","authors":"Himani Gupta","doi":"10.1108/jeas-07-2023-0186","DOIUrl":null,"url":null,"abstract":"PurposeInvestors aim for returns when investing in stocks, making return volatility a crucial concern. This study compares symmetric and asymmetric GARCH models to forecast volatility in emerging nations like the G4 countries. Accurate volatility forecasting is vital for investors to make well-informed investment decisions, forming the core purpose of this study.Design/methodology/approachFrom January 1993 to May 2021, the study spans four periods, focusing on the global economic crisis of 2008, the Russian crisis of 2015 and the COVID-19 pandemic. Standard generalized autoregressive conditional heteroscedasticity (GARCH), exponential GARCH (E-GARCH) and Glosten-Jagannathan-Runkle GARCH models were employed to analyse the data. Robustness was assessed using the Akaike information criterion, Schwarz information criterion and maximum log-likelihood criteria.FindingsThe study's findings show that the E-GARCH model is the best model for forecasting volatility in emerging nations. This is because the E-GARCH model is able to capture the asymmetric effects of positive and negative shocks on volatility.Originality/valueThis unique study compares symmetric and asymmetric GARCH models for forecasting volatility in emerging nations, a novel approach not explored in prior research. The insights gained can aid investors in constructing more effective risk-adjusted international portfolios, offering a better understanding of stock market volatility to inform strategic investment decisions.","PeriodicalId":44018,"journal":{"name":"Journal of Economic and Administrative Sciences","volume":"52 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic and Administrative Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jeas-07-2023-0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeInvestors aim for returns when investing in stocks, making return volatility a crucial concern. This study compares symmetric and asymmetric GARCH models to forecast volatility in emerging nations like the G4 countries. Accurate volatility forecasting is vital for investors to make well-informed investment decisions, forming the core purpose of this study.Design/methodology/approachFrom January 1993 to May 2021, the study spans four periods, focusing on the global economic crisis of 2008, the Russian crisis of 2015 and the COVID-19 pandemic. Standard generalized autoregressive conditional heteroscedasticity (GARCH), exponential GARCH (E-GARCH) and Glosten-Jagannathan-Runkle GARCH models were employed to analyse the data. Robustness was assessed using the Akaike information criterion, Schwarz information criterion and maximum log-likelihood criteria.FindingsThe study's findings show that the E-GARCH model is the best model for forecasting volatility in emerging nations. This is because the E-GARCH model is able to capture the asymmetric effects of positive and negative shocks on volatility.Originality/valueThis unique study compares symmetric and asymmetric GARCH models for forecasting volatility in emerging nations, a novel approach not explored in prior research. The insights gained can aid investors in constructing more effective risk-adjusted international portfolios, offering a better understanding of stock market volatility to inform strategic investment decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析新兴市场的波动模式:对称模型还是非对称模型?
目的 投资者在投资股票时都以收益为目标,因此收益的波动性是一个至关重要的问题。本研究比较了对称和非对称 GARCH 模型,以预测新兴国家(如 G4 国家)的波动性。准确的波动率预测对投资者做出明智的投资决策至关重要,这也是本研究的核心目的。设计/方法/途径本研究从 1993 年 1 月至 2021 年 5 月,跨越四个时期,重点关注 2008 年全球经济危机、2015 年俄罗斯危机和 COVID-19 大流行。数据分析采用了标准的广义自回归条件异方差(GARCH)、指数 GARCH(E-GARCH)和 Glosten-Jagannathan-Runkle GARCH 模型。研究结果表明,E-GARCH 模型是预测新兴国家波动性的最佳模型。原创性/价值这项独特的研究比较了对称和非对称 GARCH 模型对新兴国家波动率的预测作用,这是以前的研究从未探讨过的一种新方法。所获得的见解可帮助投资者构建更有效的风险调整后国际投资组合,从而更好地了解股市波动,为战略投资决策提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
5.60%
发文量
83
期刊最新文献
Understanding the impact of ethical leadership on followers' voice: mediation of moral identity and moderation of proactive personality Do agency costs and business risk affect the corporate sustainability–financial performance relationship? Investigating nostalgia’s influence on brand love Influence of governance indicators on public debt accumulation in Africa Analysing volatility patterns in emerging markets: symmetric or asymmetric models?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1