Twofold Machine-Learning and Molecular Dynamics: A Computational Framework

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers Pub Date : 2023-12-22 DOI:10.3390/computers13010002
Christos Stavrogiannis, F. Sofos, Maria Sagri, D. Vavougios, T. Karakasidis
{"title":"Twofold Machine-Learning and Molecular Dynamics: A Computational Framework","authors":"Christos Stavrogiannis, F. Sofos, Maria Sagri, D. Vavougios, T. Karakasidis","doi":"10.3390/computers13010002","DOIUrl":null,"url":null,"abstract":"Data science and machine learning (ML) techniques are employed to shed light into the molecular mechanisms that affect fluid-transport properties at the nanoscale. Viscosity and thermal conductivity values of four basic monoatomic elements, namely, argon, krypton, nitrogen, and oxygen, are gathered from experimental and simulation data in the literature and constitute a primary database for further investigation. The data refers to a wide pressure–temperature (P-T) phase space, covering fluid states from gas to liquid and supercritical. The database is enriched with new simulation data extracted from our equilibrium molecular dynamics (MD) simulations. A machine learning (ML) framework with ensemble, classical, kernel-based, and stacked algorithmic techniques is also constructed to function in parallel with the MD model, trained by existing data and predicting the values of new phase space points. In terms of algorithmic performance, it is shown that the stacked and tree-based ML models have given the most accurate results for all elements and can be excellent choices for small to medium-sized datasets. In such a way, a twofold computational scheme is constructed, functioning as a computationally inexpensive route that achieves high accuracy, aiming to replace costly experiments and simulations, when feasible.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"2 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers13010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Data science and machine learning (ML) techniques are employed to shed light into the molecular mechanisms that affect fluid-transport properties at the nanoscale. Viscosity and thermal conductivity values of four basic monoatomic elements, namely, argon, krypton, nitrogen, and oxygen, are gathered from experimental and simulation data in the literature and constitute a primary database for further investigation. The data refers to a wide pressure–temperature (P-T) phase space, covering fluid states from gas to liquid and supercritical. The database is enriched with new simulation data extracted from our equilibrium molecular dynamics (MD) simulations. A machine learning (ML) framework with ensemble, classical, kernel-based, and stacked algorithmic techniques is also constructed to function in parallel with the MD model, trained by existing data and predicting the values of new phase space points. In terms of algorithmic performance, it is shown that the stacked and tree-based ML models have given the most accurate results for all elements and can be excellent choices for small to medium-sized datasets. In such a way, a twofold computational scheme is constructed, functioning as a computationally inexpensive route that achieves high accuracy, aiming to replace costly experiments and simulations, when feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双重机器学习和分子动力学:计算框架
本研究采用数据科学和机器学习(ML)技术来揭示影响纳米尺度流体传输特性的分子机制。从文献中的实验和模拟数据中收集了四种基本单原子元素(即氩、氪、氮和氧)的粘度和热导率值,这些数据构成了进一步研究的主要数据库。这些数据涉及广泛的压力-温度(P-T)相空间,涵盖从气态到液态和超临界的流体状态。从我们的平衡分子动力学(MD)模拟中提取的新模拟数据丰富了该数据库。此外,还构建了一个机器学习(ML)框架,采用集合、经典、基于内核和堆叠算法技术,与 MD 模型并行运作,通过现有数据进行训练,并预测新相空间点的值。就算法性能而言,堆叠式和基于树的 ML 模型对所有元素都给出了最准确的结果,是中小型数据集的绝佳选择。通过这种方式,我们构建了一种双重计算方案,作为一种计算成本低廉的途径,实现了高精确度,目的是在可行的情况下取代成本高昂的实验和模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
期刊最新文献
Advanced Road Safety: Collective Perception for Probability of Collision Estimation of Connected Vehicles Forecasting of Bitcoin Illiquidity Using High-Dimensional and Textual Features Mining Negative Associations from Medical Databases Considering Frequent, Regular, Closed and Maximal Patterns Faraway, so Close: Perceptions of the Metaverse on the Edge of Madness Blockchain-Powered Gaming: Bridging Entertainment with Serious Game Objectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1