SD-ARX modeling and robust MPC with variable feedback gain for nonlinear systems

Feng Zhou, Yanhui Xi, Peidong Zhu
{"title":"SD-ARX modeling and robust MPC with variable feedback gain for nonlinear systems","authors":"Feng Zhou, Yanhui Xi, Peidong Zhu","doi":"10.1177/00202940231214849","DOIUrl":null,"url":null,"abstract":"As a generalized input-output model, the state-dependent exogenous variable autoregressive (SD-ARX) model has been intensively utilized to model complex nonlinear systems. Considering that more freedom can be provided by the state feedback control with variable feedback gain for constructing robust controllers, we propose a robust model predictive control (RMPC) algorithm with variable feedback gain on the basis of the SD-ARX model. First, the polytopic state space models (SSMs) of the system are constructed and the prediction accuracy of the SSMs is further improved by using the parameter variation rate information of the SD-ARX model. Then, an RMPC algorithm with variable feedback gain is synthesized for increasing the design freedom and enhancing the control performance. Two simulation examples, that is, the modeling and control of a continuous stirred tank reactor (CSTR) and a water tank system, are provided to demonstrate the feasibility and effectiveness of the proposed RMPC algorithm.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"82 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231214849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a generalized input-output model, the state-dependent exogenous variable autoregressive (SD-ARX) model has been intensively utilized to model complex nonlinear systems. Considering that more freedom can be provided by the state feedback control with variable feedback gain for constructing robust controllers, we propose a robust model predictive control (RMPC) algorithm with variable feedback gain on the basis of the SD-ARX model. First, the polytopic state space models (SSMs) of the system are constructed and the prediction accuracy of the SSMs is further improved by using the parameter variation rate information of the SD-ARX model. Then, an RMPC algorithm with variable feedback gain is synthesized for increasing the design freedom and enhancing the control performance. Two simulation examples, that is, the modeling and control of a continuous stirred tank reactor (CSTR) and a water tank system, are provided to demonstrate the feasibility and effectiveness of the proposed RMPC algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统的 SD-ARX 建模和带可变反馈增益的鲁棒 MPC
作为一种广义的输入输出模型,状态依赖外生变量自回归(SD-ARX)模型已被广泛用于复杂非线性系统的建模。考虑到具有可变反馈增益的状态反馈控制能为构建鲁棒控制器提供更大的自由度,我们在 SD-ARX 模型的基础上提出了一种具有可变反馈增益的鲁棒模型预测控制(RMPC)算法。首先,构建系统的多拓扑状态空间模型(SSM),并利用 SD-ARX 模型的参数变化率信息进一步提高 SSM 的预测精度。然后,合成了具有可变反馈增益的 RMPC 算法,以增加设计自由度并提高控制性能。本文提供了两个仿真实例,即连续搅拌罐反应器(CSTR)和水箱系统的建模与控制,以证明所提 RMPC 算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1