Fu Yang, Zhenxing Bo, Yao Huang, Yutian Wang, Boyang Sun, Zhen Lu, Baoan Sun, Yanhui Liu, Weihua Wang, Mingxiang Pan
{"title":"The effect of overheating-induced minor addition on Zr-based metallic glasses","authors":"Fu Yang, Zhenxing Bo, Yao Huang, Yutian Wang, Boyang Sun, Zhen Lu, Baoan Sun, Yanhui Liu, Weihua Wang, Mingxiang Pan","doi":"10.1088/1674-1056/ad1823","DOIUrl":null,"url":null,"abstract":"\n Melt treatment is well known to have an important influence on the properties of metallic glasses (MGs). However, for the MGs quenched from different melt temperatures with a quartz tube, the underlying physical origin responsible for the variation of properties remains poorly understood. In the present work, we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins. Specifically, we quenched the melt at different temperatures ranging from 1.1T\n \n l\n to 1.5T\n \n l\n (T\n \n l\n is the liquidus temperature) to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating. We found that glass transition temperature, T\n \n g\n , increases by as much as 36 K, and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5T\n \n l\n . The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys. The incorporated oxygen and silicon can both enhance the atomic interactions between atoms, which renders the cooperative rearrangements of atoms difficult, and thus enhance the kinetic stability of the MGs.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"61 22","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad1823","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Melt treatment is well known to have an important influence on the properties of metallic glasses (MGs). However, for the MGs quenched from different melt temperatures with a quartz tube, the underlying physical origin responsible for the variation of properties remains poorly understood. In the present work, we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins. Specifically, we quenched the melt at different temperatures ranging from 1.1T
l
to 1.5T
l
(T
l
is the liquidus temperature) to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating. We found that glass transition temperature, T
g
, increases by as much as 36 K, and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5T
l
. The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys. The incorporated oxygen and silicon can both enhance the atomic interactions between atoms, which renders the cooperative rearrangements of atoms difficult, and thus enhance the kinetic stability of the MGs.
众所周知,熔融处理对金属玻璃(MGs)的特性有重要影响。然而,对于用石英管从不同熔体温度淬火的金属玻璃而言,导致其性能变化的基本物理原因仍然鲜为人知。在本研究中,我们系统地研究了熔体处理对 Zr50Cu36Al14 玻璃成形合金热性能的影响,并揭示了其微观根源。具体来说,我们在 1.1T l 至 1.5T l(T l 为液相温度)的不同温度下对熔体进行淬火,以获得熔融纺丝的 MG 带,并研究了加热时 MG 热性能的变化。我们发现,当熔体在高达 1.5T l 的高温下淬火时,玻璃化转变温度 T g 上升了 36 K 之多,并且在差示扫描量热曲线上过冷液体区域消失了。仔细的化学分析表明,玻璃化转变行为的变化源于熔融合金中氧和硅的加入。掺入的氧和硅都能增强原子间的相互作用,使原子间的协同重排变得困难,从而增强了 MGs 的动力学稳定性。
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.