Shaoming Peng, Gang Xiong, Jing Yang, Zhen Shen, Tariku Sinshaw Tamir, Zhikun Tao, Yunjun Han, Fei-Yue Wang
{"title":"Multi-Agent Reinforcement Learning for Extended Flexible Job Shop Scheduling","authors":"Shaoming Peng, Gang Xiong, Jing Yang, Zhen Shen, Tariku Sinshaw Tamir, Zhikun Tao, Yunjun Han, Fei-Yue Wang","doi":"10.3390/machines12010008","DOIUrl":null,"url":null,"abstract":"An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle manufacturing, and multiple aircraft maintenance. However, optimizing the scheduling puts forward higher requirements on accuracy, real time, and generalization, while subject to the curse of dimension and usually incomplete information. Various coupling relations among operations, stations, and resources aggravate the problem. To deal with the above challenges, we propose a multi-agent reinforcement learning algorithm where the scheduling environment is modeled as a decentralized partially observable Markov decision process. Each job is regarded as an agent that decides the next triplet, i.e., operation, station, and employed resource. This paper is novel in addressing the flexible job shop scheduling problem with dual flexibility and varied transportation time in consideration and proposing a double Q-value mixing (DQMIX) optimization algorithm under a multi-agent reinforcement learning framework. The experiments of our case study show that the DQMIX algorithm outperforms existing multi-agent reinforcement learning algorithms in terms of solution accuracy, stability, and generalization. In addition, it achieves better solution quality for larger-scale cases than traditional intelligent optimization algorithms.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"8 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12010008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle manufacturing, and multiple aircraft maintenance. However, optimizing the scheduling puts forward higher requirements on accuracy, real time, and generalization, while subject to the curse of dimension and usually incomplete information. Various coupling relations among operations, stations, and resources aggravate the problem. To deal with the above challenges, we propose a multi-agent reinforcement learning algorithm where the scheduling environment is modeled as a decentralized partially observable Markov decision process. Each job is regarded as an agent that decides the next triplet, i.e., operation, station, and employed resource. This paper is novel in addressing the flexible job shop scheduling problem with dual flexibility and varied transportation time in consideration and proposing a double Q-value mixing (DQMIX) optimization algorithm under a multi-agent reinforcement learning framework. The experiments of our case study show that the DQMIX algorithm outperforms existing multi-agent reinforcement learning algorithms in terms of solution accuracy, stability, and generalization. In addition, it achieves better solution quality for larger-scale cases than traditional intelligent optimization algorithms.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.