Highly responsive diabetes and asthma sensors with WO3 nanoneedle films for the detection of biogases with low concentrations

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2023-12-22 DOI:10.1038/s41427-023-00515-7
Yoshitake Masuda, Ayako Uozumi
{"title":"Highly responsive diabetes and asthma sensors with WO3 nanoneedle films for the detection of biogases with low concentrations","authors":"Yoshitake Masuda, Ayako Uozumi","doi":"10.1038/s41427-023-00515-7","DOIUrl":null,"url":null,"abstract":"A diabetes sensor was developed to detect low concentrations of acetone gas, which is a diabetes biomarker. A WO3 nanoneedle film was synthesized via an aqueous process for use as a sensitive sensing membrane. Acetone was adsorbed and oxidized on the WO3 nanoneedle film, which changed the sensor resistance. The sensor exhibited a high response of Ra/Rg = 19.72, where Ra is the sensor resistance in air, and Rg is the sensor resistance in air containing 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. Furthermore, the sensor responded to various biogases associated with diseases. The sensor responses to 10 ppmv of the lung cancer marker gases acetaldehyde and toluene were 13.54 and 9.49, respectively. The sensor responses to 10 ppmv isoprene, ethanol, para-xylene, hydrogen, and NH3 were 7.93, 6.33, 4.51, 2.08, and 0.90, respectively. Trace amounts of acetone and NO2 gases (25 and 250 ppbv, respectively) were detected. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates. A WO3 nanoneedle film was developed for a gas sensor to detect low concentrations of acetone gas, which is a diabetes biomarker. The sensor exhibited a high response (19.72) to 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-18"},"PeriodicalIF":8.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00515-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00515-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A diabetes sensor was developed to detect low concentrations of acetone gas, which is a diabetes biomarker. A WO3 nanoneedle film was synthesized via an aqueous process for use as a sensitive sensing membrane. Acetone was adsorbed and oxidized on the WO3 nanoneedle film, which changed the sensor resistance. The sensor exhibited a high response of Ra/Rg = 19.72, where Ra is the sensor resistance in air, and Rg is the sensor resistance in air containing 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. Furthermore, the sensor responded to various biogases associated with diseases. The sensor responses to 10 ppmv of the lung cancer marker gases acetaldehyde and toluene were 13.54 and 9.49, respectively. The sensor responses to 10 ppmv isoprene, ethanol, para-xylene, hydrogen, and NH3 were 7.93, 6.33, 4.51, 2.08, and 0.90, respectively. Trace amounts of acetone and NO2 gases (25 and 250 ppbv, respectively) were detected. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates. A WO3 nanoneedle film was developed for a gas sensor to detect low concentrations of acetone gas, which is a diabetes biomarker. The sensor exhibited a high response (19.72) to 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 WO_3 纳米针薄膜检测低浓度生物气体的高响应糖尿病和哮喘传感器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Relationship between network topology and negative electrode properties in Wadsley–Roth phase TiNb2O7 Recent advances in high-entropy superconductors Intrinsically anisotropic 1D NbTe4 for self-powered polarization-sensitive photodetection Band anisotropy and effective mass renormalization in strained metallic VO2 (101) thin films Molecular beam epitaxial In2Te3 electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1