Design of a fluorescent method by using ZnS QDs-gelatin nanocomposite for sensing toxic 2-mercaptobenzothiazole in water samples

IF 2.1 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Sulfur Chemistry Pub Date : 2024-05-03 DOI:10.1080/17415993.2023.2297708
Elham Pournamdari , Leila Niknam
{"title":"Design of a fluorescent method by using ZnS QDs-gelatin nanocomposite for sensing toxic 2-mercaptobenzothiazole in water samples","authors":"Elham Pournamdari ,&nbsp;Leila Niknam","doi":"10.1080/17415993.2023.2297708","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the residue of toxic 2-mercaptobenzothiazole, a semi-volatile heteroaromatic, was extracted from wastewater using a new spectrofluorometric method. The method is based on measuring 2-Mercaptobenzothiazole the quenching effect on the fluorescence intensity of ZnS quantum dot–gelatin nanocomposite in (pH 4, λ<sub>ex</sub> 310 and λ<sub>em</sub> 345 nm, in time 60 s). Different factors affecting the reaction were studied and optimized. The calibration plot is linear in the concentration range of (0.05–10.0 µgL<sup>−1</sup>). The relative standard deviations and the detection limit of the method were ±1.0% and 0.05 μgL<sup>−1</sup>, respectively. Observed, outcomes confirmed the suitability recovery and a meager detection limit for analyzing toxic 2-Mercaptobenzothiazole in water samples. The preliminary results from this study demonstrate that this new method can be used to analyze 2-mercaptobenzothiazole in wastewater.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":"45 3","pages":"Pages 408-421"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S174159932300106X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the residue of toxic 2-mercaptobenzothiazole, a semi-volatile heteroaromatic, was extracted from wastewater using a new spectrofluorometric method. The method is based on measuring 2-Mercaptobenzothiazole the quenching effect on the fluorescence intensity of ZnS quantum dot–gelatin nanocomposite in (pH 4, λex 310 and λem 345 nm, in time 60 s). Different factors affecting the reaction were studied and optimized. The calibration plot is linear in the concentration range of (0.05–10.0 µgL−1). The relative standard deviations and the detection limit of the method were ±1.0% and 0.05 μgL−1, respectively. Observed, outcomes confirmed the suitability recovery and a meager detection limit for analyzing toxic 2-Mercaptobenzothiazole in water samples. The preliminary results from this study demonstrate that this new method can be used to analyze 2-mercaptobenzothiazole in wastewater.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ZnS QDs-明胶纳米复合材料设计一种荧光方法,用于检测水样中的有毒 2-巯基苯并噻唑
本研究采用一种新的光谱荧光法从废水中提取了有毒的2-巯基苯并噻唑(一种半挥发性杂芳烃)残留物。该方法基于测量 2-巯基苯并噻唑对 ZnS 量子点-明胶纳米复合材料荧光强度的淬灭效应(pH 4,λex 310 和 λem 345 nm,时间 60 s)。对影响反应的不同因素进行了研究和优化。校准图在浓度范围(0.05-10.0 µgL-1)内呈线性关系。方法的相对标准偏差和检测限分别为 ±1.0% 和 0.05 μgL-1。观察结果证实,该方法适用于分析水样中有毒的 2-巯基苯并噻唑,且检出限较低。这项研究的初步结果表明,这种新方法可用于分析废水中的 2-巯基苯并噻唑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sulfur Chemistry
Journal of Sulfur Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.10
自引率
9.10%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science. Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.
期刊最新文献
A green and efficient synthesis of alkyl 2-((5-hydroxy-1H-pyrazole-4-carbonothioyl)thio)acetates via a one-pot, solvent-free reaction Synthesis of novel isoxazole/dihydroisoxazole tethered β-lactam hybrids via regiospecific 1,3-dipolar cycloaddition methodology on 3-phenylthio-β-lactams Thiazole derivatives: prospectives and biological applications Synthesis of benzothioamide derivatives from benzonitriles and H2S-based salts in supercritical CO2 Synthesis and biological evaluation of 2-(2-hydrazinyl) thiazole derivatives with potential antibacterial and antioxidant activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1