A Dual-Agent Approach for Coordinated Task Offloading and Resource Allocation in MEC

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Electrical and Computer Engineering Pub Date : 2023-12-21 DOI:10.1155/2023/6134837
Jiadong Dong, Kai Pan, Chunxiang Zheng, Lin Chen, Shunfeng Wu, Xiaoling Zhang
{"title":"A Dual-Agent Approach for Coordinated Task Offloading and Resource Allocation in MEC","authors":"Jiadong Dong, Kai Pan, Chunxiang Zheng, Lin Chen, Shunfeng Wu, Xiaoling Zhang","doi":"10.1155/2023/6134837","DOIUrl":null,"url":null,"abstract":"Multiaccess edge computing (MEC) is a novel distributed computing paradigm. In this paper, we investigate the challenges of task offloading scheduling, communication bandwidth, and edge server computing resource allocation for multiple user equipments (UEs) in MEC. Our primary objective is to minimize system latency and local energy consumption. We explore the binary offloading and partial offloading methods and introduce the dual agent-TD3 (DA-TD3) algorithm based on the deep reinforcement learning (DRL) TD3 algorithm. The proposed algorithm coordinates task offloading scheduling and resource allocation for two intelligent agents. Specifically, agent 1 overcomes the action space explosion problem caused by the increasing number of UEs, by utilizing both binary and partial offloading. Agent 2 dynamically allocates communication bandwidth and computing resources to adapt to different task scenarios and network environments. Our simulation experiments demonstrate that the binary and partial offloading schemes of the DA-TD3 algorithm significantly reduce system latency and local energy consumption compared with deep deterministic policy gradient (DDPG) and other offloading schemes. Furthermore, the partial offloading optimization scheme performs the best.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6134837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiaccess edge computing (MEC) is a novel distributed computing paradigm. In this paper, we investigate the challenges of task offloading scheduling, communication bandwidth, and edge server computing resource allocation for multiple user equipments (UEs) in MEC. Our primary objective is to minimize system latency and local energy consumption. We explore the binary offloading and partial offloading methods and introduce the dual agent-TD3 (DA-TD3) algorithm based on the deep reinforcement learning (DRL) TD3 algorithm. The proposed algorithm coordinates task offloading scheduling and resource allocation for two intelligent agents. Specifically, agent 1 overcomes the action space explosion problem caused by the increasing number of UEs, by utilizing both binary and partial offloading. Agent 2 dynamically allocates communication bandwidth and computing resources to adapt to different task scenarios and network environments. Our simulation experiments demonstrate that the binary and partial offloading schemes of the DA-TD3 algorithm significantly reduce system latency and local energy consumption compared with deep deterministic policy gradient (DDPG) and other offloading schemes. Furthermore, the partial offloading optimization scheme performs the best.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEC 中协调任务卸载和资源分配的双代理方法
多接入边缘计算(MEC)是一种新型分布式计算模式。本文研究了 MEC 中多个用户设备(UE)的任务卸载调度、通信带宽和边缘服务器计算资源分配所面临的挑战。我们的主要目标是最大限度地减少系统延迟和本地能耗。我们探索了二进制卸载和部分卸载方法,并在深度强化学习(DRL)TD3 算法的基础上引入了双代理-TD3(DA-TD3)算法。所提出的算法协调了两个智能代理的任务卸载调度和资源分配。具体来说,代理 1 利用二元卸载和部分卸载,克服了因 UE 数量增加而导致的行动空间爆炸问题。代理 2 动态分配通信带宽和计算资源,以适应不同的任务场景和网络环境。我们的模拟实验证明,与深度确定性策略梯度(DDPG)和其他卸载方案相比,DA-TD3 算法的二进制和部分卸载方案显著降低了系统延迟和本地能耗。此外,部分卸载优化方案的性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
期刊最新文献
Network Intrusion Detection Using Knapsack Optimization, Mutual Information Gain, and Machine Learning Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element A Novel Technique for Facial Recognition Based on the GSO-CNN Deep Learning Algorithm Simulation Analysis of Arc-Quenching Performance of Eco-Friendly Insulating Gas Mixture of CF3I and CO2 under Impulse Arc Balancing Data Privacy and 5G VNFs Security Monitoring: Federated Learning with CNN + BiLSTM + LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1