The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis
L. Gaetani, G. Bellomo, Elena Di Sabatino, S. Sperandei, Andrea Mancini, K. Blennow, Henrik Zetterberg, L. Parnetti, M. Di Filippo
{"title":"The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis","authors":"L. Gaetani, G. Bellomo, Elena Di Sabatino, S. Sperandei, Andrea Mancini, K. Blennow, Henrik Zetterberg, L. Parnetti, M. Di Filippo","doi":"10.3390/ijms25010139","DOIUrl":null,"url":null,"abstract":"Early diagnosis of multiple sclerosis (MS) relies on clinical evaluation, magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) analysis. Reliable biomarkers are needed to differentiate MS from other neurological conditions and to define the underlying pathogenesis. This study aimed to comprehensively profile immune activation biomarkers in the CSF of individuals with MS and explore distinct signatures between MS with and without oligoclonal bands (OCB). A total of 118 subjects, including relapsing–remitting MS with OCB (MS OCB+) (n = 58), without OCB (MS OCB−) (n = 24), and controls with other neurological diseases (OND) (n = 36), were included. CSF samples were analyzed by means of proximity extension assay (PEA) for quantifying 92 immune-related proteins. Neurofilament light chain (NfL), a marker of axonal damage, was also measured. Machine learning techniques were employed to identify biomarker panels differentiating MS with and without OCB from controls. Analyses were performed by splitting the cohort into a training and a validation set. CSF CD5 and IL-12B exhibited the highest discriminatory power in differentiating MS from controls. CSF MIP-1-alpha, CD5, CXCL10, CCL23 and CXCL9 were positively correlated with NfL. Multivariate models were developed to distinguish MS OCB+ and MS OCB− from controls. The model for MS OCB+ included IL-12B, CD5, CX3CL1, FGF-19, CST5, MCP-1 (91% sensitivity and 94% specificity in the training set, 81% sensitivity, and 94% specificity in the validation set). The model for MS OCB− included CX3CL1, CD5, NfL, CCL4 and OPG (87% sensitivity and 80% specificity in the training set, 56% sensitivity and 48% specificity in the validation set). Comprehensive immune profiling of CSF biomarkers in MS revealed distinct pathophysiological signatures associated with OCB status. The identified biomarker panels, enriched in T cell activation markers and immune mediators, hold promise for improved diagnostic accuracy and insights into MS pathogenesis.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"9 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25010139","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis of multiple sclerosis (MS) relies on clinical evaluation, magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) analysis. Reliable biomarkers are needed to differentiate MS from other neurological conditions and to define the underlying pathogenesis. This study aimed to comprehensively profile immune activation biomarkers in the CSF of individuals with MS and explore distinct signatures between MS with and without oligoclonal bands (OCB). A total of 118 subjects, including relapsing–remitting MS with OCB (MS OCB+) (n = 58), without OCB (MS OCB−) (n = 24), and controls with other neurological diseases (OND) (n = 36), were included. CSF samples were analyzed by means of proximity extension assay (PEA) for quantifying 92 immune-related proteins. Neurofilament light chain (NfL), a marker of axonal damage, was also measured. Machine learning techniques were employed to identify biomarker panels differentiating MS with and without OCB from controls. Analyses were performed by splitting the cohort into a training and a validation set. CSF CD5 and IL-12B exhibited the highest discriminatory power in differentiating MS from controls. CSF MIP-1-alpha, CD5, CXCL10, CCL23 and CXCL9 were positively correlated with NfL. Multivariate models were developed to distinguish MS OCB+ and MS OCB− from controls. The model for MS OCB+ included IL-12B, CD5, CX3CL1, FGF-19, CST5, MCP-1 (91% sensitivity and 94% specificity in the training set, 81% sensitivity, and 94% specificity in the validation set). The model for MS OCB− included CX3CL1, CD5, NfL, CCL4 and OPG (87% sensitivity and 80% specificity in the training set, 56% sensitivity and 48% specificity in the validation set). Comprehensive immune profiling of CSF biomarkers in MS revealed distinct pathophysiological signatures associated with OCB status. The identified biomarker panels, enriched in T cell activation markers and immune mediators, hold promise for improved diagnostic accuracy and insights into MS pathogenesis.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).