The p66Shc Redox Protein and the Emerging Complications of Diabetes

IF 4.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Molecular Sciences Pub Date : 2023-12-20 DOI:10.3390/ijms25010108
G. Biondi, N. Marrano, Anna Borrelli, Martina Rella, R. D'Oria, V. A. Genchi, C. Caccioppoli, A. Cignarelli, Sebastio Perrini, L. Laviola, Francesco Giorgino, A. Natalicchio
{"title":"The p66Shc Redox Protein and the Emerging Complications of Diabetes","authors":"G. Biondi, N. Marrano, Anna Borrelli, Martina Rella, R. D'Oria, V. A. Genchi, C. Caccioppoli, A. Cignarelli, Sebastio Perrini, L. Laviola, Francesco Giorgino, A. Natalicchio","doi":"10.3390/ijms25010108","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus is a chronic metabolic disease, the prevalence of which is constantly increasing worldwide. It is often burdened by disabling comorbidities that reduce the quality and expectancy of life of the affected individuals. The traditional complications of diabetes are generally described as macrovascular complications (e.g., coronary heart disease, peripheral arterial disease, and stroke), and microvascular complications (e.g., diabetic kidney disease, retinopathy, and neuropathy). Recently, due to advances in diabetes management and the increased life expectancy of diabetic patients, a strong correlation between diabetes and other pathological conditions (such as liver diseases, cancer, neurodegenerative diseases, cognitive impairments, and sleep disorders) has emerged. Therefore, these comorbidities have been proposed as emerging complications of diabetes. P66Shc is a redox protein that plays a role in oxidative stress, apoptosis, glucose metabolism, and cellular aging. It can be regulated by various stressful stimuli typical of the diabetic milieu and is involved in various types of organ and tissue damage under diabetic conditions. Although its role in the pathogenesis of diabetes remains controversial, there is strong evidence regarding the involvement of p66Shc in the traditional complications of diabetes. In this review, we will summarize the evidence supporting the role of p66Shc in the pathogenesis of diabetes and its complications, focusing for the first time on the emerging complications of diabetes.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"1 8","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25010108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus is a chronic metabolic disease, the prevalence of which is constantly increasing worldwide. It is often burdened by disabling comorbidities that reduce the quality and expectancy of life of the affected individuals. The traditional complications of diabetes are generally described as macrovascular complications (e.g., coronary heart disease, peripheral arterial disease, and stroke), and microvascular complications (e.g., diabetic kidney disease, retinopathy, and neuropathy). Recently, due to advances in diabetes management and the increased life expectancy of diabetic patients, a strong correlation between diabetes and other pathological conditions (such as liver diseases, cancer, neurodegenerative diseases, cognitive impairments, and sleep disorders) has emerged. Therefore, these comorbidities have been proposed as emerging complications of diabetes. P66Shc is a redox protein that plays a role in oxidative stress, apoptosis, glucose metabolism, and cellular aging. It can be regulated by various stressful stimuli typical of the diabetic milieu and is involved in various types of organ and tissue damage under diabetic conditions. Although its role in the pathogenesis of diabetes remains controversial, there is strong evidence regarding the involvement of p66Shc in the traditional complications of diabetes. In this review, we will summarize the evidence supporting the role of p66Shc in the pathogenesis of diabetes and its complications, focusing for the first time on the emerging complications of diabetes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
p66Shc 氧化还原蛋白与新出现的糖尿病并发症
糖尿病是一种慢性代谢性疾病,其发病率在全球范围内不断上升。这种疾病通常伴有致残性并发症,降低了患者的生活质量和预期寿命。糖尿病的传统并发症一般被描述为大血管并发症(如冠心病、外周动脉疾病和中风)和微血管并发症(如糖尿病肾病、视网膜病变和神经病变)。近来,由于糖尿病管理的进步和糖尿病患者预期寿命的延长,糖尿病与其他病症(如肝病、癌症、神经退行性疾病、认知障碍和睡眠障碍)之间出现了密切的相关性。因此,这些合并症被认为是糖尿病的新并发症。P66Shc 是一种氧化还原蛋白,在氧化应激、细胞凋亡、糖代谢和细胞衰老中发挥作用。它可受到糖尿病环境中各种典型的应激刺激的调节,并参与糖尿病条件下各种器官和组织的损伤。尽管 p66Shc 在糖尿病发病机制中的作用仍存在争议,但有确凿证据表明它参与了糖尿病传统并发症的发生。在这篇综述中,我们将总结支持 p66Shc 在糖尿病及其并发症的发病机制中发挥作用的证据,并首次将重点放在新出现的糖尿病并发症上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Molecular Sciences
International Journal of Molecular Sciences Chemistry-Organic Chemistry
CiteScore
8.10
自引率
10.70%
发文量
13472
审稿时长
17.49 days
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
The AlkB Homolog SlALKBH10B Negatively Affects Drought and Salt Tolerance in Solanum lycopersicum The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens Generation and Characterization of Trastuzumab/Pertuzumab-Resistant HER2-Positive Breast Cancer Cell Lines Aberrant Platelet Aggregation as Initial Presentation of Essential Thrombocythemia: Failure of Entero-Coated Aspirin to Reduce Platelet Hyperactivation Distinct Metabolic Profiles of Ocular Hypertensives in Response to Hypoxia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1