{"title":"Momilactones and Phenolics in Brown Rice: Enrichment, Optimized Extraction, and Potential for Antioxidant and Anti-Diabetic Activities","authors":"Mehedi Hasan, L. Anh, T. Xuan","doi":"10.3390/separations11010006","DOIUrl":null,"url":null,"abstract":"This is the first study aiming to enrich momilactones A (MA) and B (MB) and phenolic compounds in germinated brown rice (GBR) and non-GBR var. Koshihikari and Milky Queen through the cooking process. Extraction methods for these compounds were optimized by applying various conditions, including solvents (80% methanol and 80% ethanol), heat (80 °C), and sonication (2 h). Momilactone and phenolic quantities were determined by ultra-performance liquid chromatography–electrospray ionization mass spectrometry (UPLC–ESI-MS) and high-performance liquid chromatography (HPLC), respectively. Accordingly, cooked Koshihikari GBR extract using 80% methanol and sonication (GKB4) revealed the highest amounts of tricin, caffeic, ρ-hydroxybenzoic, ρ-coumaric, ferulic, salicylic, and cinnamic acids (1.71, 1.01, 0.62, 0.45, 0.94, 2.50, and 0.37 mg/g DW, respectively), consistent with the strongest antiradical activities in DPPH and ABTS assays (IC50 = 1.47 and 1.70 mg/mL, respectively). Non-cooked GBR Koshihikari extract using 80% ethanol and sonication (GKB9) exhibited the highest MA and MB contents (147.73 and 118.8 μg/g DW, respectively). Notably, GKB9 showed potent inhibition of α-amylase and α-glucosidase (IC50 = 0.48 and 0.15 mg/mL, respectively), compared with the anti-diabetic drug acarbose (IC50 = 0.26 and 2.48 mg/mL, respectively). The findings hold significant implications for developing phenolic- and momilactone-enriched brown rice with health-beneficial properties.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"3 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11010006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This is the first study aiming to enrich momilactones A (MA) and B (MB) and phenolic compounds in germinated brown rice (GBR) and non-GBR var. Koshihikari and Milky Queen through the cooking process. Extraction methods for these compounds were optimized by applying various conditions, including solvents (80% methanol and 80% ethanol), heat (80 °C), and sonication (2 h). Momilactone and phenolic quantities were determined by ultra-performance liquid chromatography–electrospray ionization mass spectrometry (UPLC–ESI-MS) and high-performance liquid chromatography (HPLC), respectively. Accordingly, cooked Koshihikari GBR extract using 80% methanol and sonication (GKB4) revealed the highest amounts of tricin, caffeic, ρ-hydroxybenzoic, ρ-coumaric, ferulic, salicylic, and cinnamic acids (1.71, 1.01, 0.62, 0.45, 0.94, 2.50, and 0.37 mg/g DW, respectively), consistent with the strongest antiradical activities in DPPH and ABTS assays (IC50 = 1.47 and 1.70 mg/mL, respectively). Non-cooked GBR Koshihikari extract using 80% ethanol and sonication (GKB9) exhibited the highest MA and MB contents (147.73 and 118.8 μg/g DW, respectively). Notably, GKB9 showed potent inhibition of α-amylase and α-glucosidase (IC50 = 0.48 and 0.15 mg/mL, respectively), compared with the anti-diabetic drug acarbose (IC50 = 0.26 and 2.48 mg/mL, respectively). The findings hold significant implications for developing phenolic- and momilactone-enriched brown rice with health-beneficial properties.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization