Significant Progress of Initiated Chemical Vapor Deposition in Manufacturing Soft Non-spherical Nanoparticles: Upgrading to the Condensed Droplet Polymerization Approach and Key Technological Aspects
{"title":"Significant Progress of Initiated Chemical Vapor Deposition in Manufacturing Soft Non-spherical Nanoparticles: Upgrading to the Condensed Droplet Polymerization Approach and Key Technological Aspects","authors":"Di Zhang","doi":"10.3390/chemengineering8010002","DOIUrl":null,"url":null,"abstract":"Initiated chemical vapor deposition is a unique solvent-free and completely dry vapor-phase deposition technique used to synthesize organic polymer films. In this process, an activated initiator, monomer, and carrier gas are introduced into the reaction chamber simultaneously. This technique has been widely adopted. However, if the monomer and initiator are introduced into the chamber in stages—allowing gas-phase monomer deposition and condensation first, followed by initiator introduction and controlling the monomer partial pressure to be higher than the saturated vapor pressure—non-spherical polymer nanoparticles with dome-like shapes can be obtained. This advanced iCVD technique is referred to as the “Condensed Droplet Polymerization Approach”. This high monomer partial pressure gas-phase deposition is not suitable for forming uniformly composed iCVD films; but interestingly, it can rapidly obtain polymer nanodomes (PNDs). Using CDP technology, Franklin polymerized multifunctional nanodomes in less than 45 s, demonstrating a wide range of continuous particle size variations, from sub-20 nanometers to over 1 micron. This rapid synthesis included a variety of functional polymer nanodomes in just a matter of seconds to minutes. This review discusses the crucial process conditions of the Condensed Droplet Polymerization (CDP) Approach for synthesizing PNDs. The main focus of the discussion was on the two-step method for synthesizing PNDs, where the nucleation mechanism of PNDs, factors influencing their size, and the effect of pressure on the distinct condensation of monomer vapor into polymer nanodomes and polymer films were extensively explored.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering8010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Initiated chemical vapor deposition is a unique solvent-free and completely dry vapor-phase deposition technique used to synthesize organic polymer films. In this process, an activated initiator, monomer, and carrier gas are introduced into the reaction chamber simultaneously. This technique has been widely adopted. However, if the monomer and initiator are introduced into the chamber in stages—allowing gas-phase monomer deposition and condensation first, followed by initiator introduction and controlling the monomer partial pressure to be higher than the saturated vapor pressure—non-spherical polymer nanoparticles with dome-like shapes can be obtained. This advanced iCVD technique is referred to as the “Condensed Droplet Polymerization Approach”. This high monomer partial pressure gas-phase deposition is not suitable for forming uniformly composed iCVD films; but interestingly, it can rapidly obtain polymer nanodomes (PNDs). Using CDP technology, Franklin polymerized multifunctional nanodomes in less than 45 s, demonstrating a wide range of continuous particle size variations, from sub-20 nanometers to over 1 micron. This rapid synthesis included a variety of functional polymer nanodomes in just a matter of seconds to minutes. This review discusses the crucial process conditions of the Condensed Droplet Polymerization (CDP) Approach for synthesizing PNDs. The main focus of the discussion was on the two-step method for synthesizing PNDs, where the nucleation mechanism of PNDs, factors influencing their size, and the effect of pressure on the distinct condensation of monomer vapor into polymer nanodomes and polymer films were extensively explored.