Effect of Inserting Baffles on the Solid Particle Segregation Behavior in Fluidized Bed Reactor: A Computational Study

IF 2.8 Q2 ENGINEERING, CHEMICAL ChemEngineering Pub Date : 2024-01-01 DOI:10.3390/chemengineering8010007
Suchart Kreesaeng, B. Chalermsinsuwan, P. Piumsomboon
{"title":"Effect of Inserting Baffles on the Solid Particle Segregation Behavior in Fluidized Bed Reactor: A Computational Study","authors":"Suchart Kreesaeng, B. Chalermsinsuwan, P. Piumsomboon","doi":"10.3390/chemengineering8010007","DOIUrl":null,"url":null,"abstract":"In multi-solid, particle-size fluidized bed reactor systems, segregation is commonly observed. When segregation occurred, small solid particles were entrained to the top of the bed and escaped from the reactor. During the combustion process, the small solid particles that escaped from the boiler were burned and subjected to damage around the cyclone separator. This study then employed a computational fluid dynamics approach to investigate solid particle behavior in the reactor using three different sizes of solid particles. The effects of baffle insertion, baffle angle, stage number, and its arrangement were examined. The percentage of segregation was calculated to compare behavior among different reactor systems. The insertion of 45-degree baffles resulted in reduced segregation behavior compared to cases without baffles and with 90-degree baffles, attributed to solid hindering and collision phenomena. Additionally, a double-stage baffle with any arrangement could reduce segregation behavior. The best arrangement was “above-arrangement” due to particles hindering, swirling, and accumulating between the baffle stages. Therefore, to diminish segregation behavior and enhance combustion chemical reactions, the insertion of baffles in the reactor zone is recommended.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":"96 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering8010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In multi-solid, particle-size fluidized bed reactor systems, segregation is commonly observed. When segregation occurred, small solid particles were entrained to the top of the bed and escaped from the reactor. During the combustion process, the small solid particles that escaped from the boiler were burned and subjected to damage around the cyclone separator. This study then employed a computational fluid dynamics approach to investigate solid particle behavior in the reactor using three different sizes of solid particles. The effects of baffle insertion, baffle angle, stage number, and its arrangement were examined. The percentage of segregation was calculated to compare behavior among different reactor systems. The insertion of 45-degree baffles resulted in reduced segregation behavior compared to cases without baffles and with 90-degree baffles, attributed to solid hindering and collision phenomena. Additionally, a double-stage baffle with any arrangement could reduce segregation behavior. The best arrangement was “above-arrangement” due to particles hindering, swirling, and accumulating between the baffle stages. Therefore, to diminish segregation behavior and enhance combustion chemical reactions, the insertion of baffles in the reactor zone is recommended.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
插入挡板对流化床反应器中固体颗粒偏析行为的影响:计算研究
在多固体、粒度流化床反应器系统中,通常会出现偏析现象。发生偏析时,小的固体颗粒被夹带到床的顶部,并从反应器中逸出。在燃烧过程中,逸出锅炉的小固体颗粒被燃烧,并在旋风分离器周围受到破坏。本研究采用计算流体动力学方法,使用三种不同大小的固体颗粒研究反应器中的固体颗粒行为。研究了挡板插入、挡板角度、级数及其排列的影响。计算了偏析的百分比,以比较不同反应器系统的行为。与无挡板和有 90 度挡板的情况相比,插入 45 度挡板可减少偏析行为,这归因于固体阻碍和碰撞现象。此外,任何布置的双级挡板都能减少偏析行为。最佳布置是 "高于布置",原因是颗粒在挡板级之间阻碍、旋转和积聚。因此,为了减少偏析行为并加强燃烧化学反应,建议在反应器区域插入挡板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
期刊最新文献
Catalysts Based on Iron Oxides for Wastewater Purification from Phenolic Compounds: Synthesis, Physicochemical Analysis, Determination of Catalytic Activity Effect of Inserting Baffles on the Solid Particle Segregation Behavior in Fluidized Bed Reactor: A Computational Study Force Field for Calculation of the Vapor-Liquid Phase Equilibrium of trans-Decalin Antisolvent Crystallization of Papain Ultrafiltration to Increase the Consistency of Fruit Pulps: The Role of Permeate Flux
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1