Thermally tunable high Q-factor and low-power silicon resonators using graphene transparent electrodes

Qilin Hong, Ping Xu, Wei Xu, Zhihong Zhu
{"title":"Thermally tunable high Q-factor and low-power silicon resonators using graphene transparent electrodes","authors":"Qilin Hong, Ping Xu, Wei Xu, Zhihong Zhu","doi":"10.1117/12.3006019","DOIUrl":null,"url":null,"abstract":"Tunable and low-power microcavities play a vital role in facilitating the development of large-scale photonic integrated circuits. Among various tuning methods, thermal tuning has gained significant popularity due to its convenience and stability, especially in the fields of optical neural networks and quantum information processing. In recent years, graphene thermal tuning has emerged as a promising technique, offering both tunability and power efficiency by eliminating the need for thick spacers to prevent light absorption. In this study, we propose and fabricate a silicon-based on-chip Fano resonator with graphene nano-heaters. This innovative Fano structure incorporates a scattering block and can be easily manufactured in large quantities. Experimental results demonstrate that the resonator exhibits desirable characteristics, including a high quality factor of approximately 31000 and a low state-switching power consumption of around 1 mW. The temporal responses of the microcavity exhibit satisfactory modulation speed, with a rise time of 9.8 μs and a fall time of 16.6 μs. The findings of this research offer an alternative solution for the future development of large-scale tunable and low-power-consumption optical networks, with potential applications in optical filters and switches.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tunable and low-power microcavities play a vital role in facilitating the development of large-scale photonic integrated circuits. Among various tuning methods, thermal tuning has gained significant popularity due to its convenience and stability, especially in the fields of optical neural networks and quantum information processing. In recent years, graphene thermal tuning has emerged as a promising technique, offering both tunability and power efficiency by eliminating the need for thick spacers to prevent light absorption. In this study, we propose and fabricate a silicon-based on-chip Fano resonator with graphene nano-heaters. This innovative Fano structure incorporates a scattering block and can be easily manufactured in large quantities. Experimental results demonstrate that the resonator exhibits desirable characteristics, including a high quality factor of approximately 31000 and a low state-switching power consumption of around 1 mW. The temporal responses of the microcavity exhibit satisfactory modulation speed, with a rise time of 9.8 μs and a fall time of 16.6 μs. The findings of this research offer an alternative solution for the future development of large-scale tunable and low-power-consumption optical networks, with potential applications in optical filters and switches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用石墨烯透明电极的热可调高 Q 因子和低功率硅谐振器
可调谐低功耗微腔在促进大规模光子集成电路的发展方面发挥着至关重要的作用。在各种调谐方法中,热调谐因其方便性和稳定性而大受欢迎,尤其是在光神经网络和量子信息处理领域。近年来,石墨烯热调谐已成为一种前景广阔的技术,它无需使用厚垫片来防止光吸收,从而兼具可调谐性和功率效率。在本研究中,我们提出并制造了一种带有石墨烯纳米加热器的硅基片上法诺谐振器。这种创新的法诺结构包含一个散射块,可以很容易地大量制造。实验结果表明,该谐振器具有理想的特性,包括约 31000 的高品质因数和 1 mW 左右的低状态切换功耗。微腔的时间响应显示出令人满意的调制速度,上升时间为 9.8 μs,下降时间为 16.6 μs。这项研究成果为未来开发大规模可调谐低功耗光网络提供了另一种解决方案,有望应用于光滤波器和交换机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composition disorder in InAs/InAsSb superlattice by STM Optical true time delay technique with bidirectional consistency based on unidirectional optical amplifier Large curvature concave metallic mesh with high optical transmittance and strong electromagnetic interference shielding efficiency DP-OOK to QPSK conversion based on vector phase-sensitive amplification bridging core and access networks Real-time digitized RoF transceiver technology based on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1