{"title":"Effect of Photoperiod and Gibberellin on the Bolting and Flowering of Non-Heading Chinese Cabbage","authors":"Shuping Liu, Junyang Lu, Jun Tian, Ping Cao, Shuhao Li, Haicui Ge, Mingxuan Han, Fenglin Zhong","doi":"10.3390/horticulturae9121349","DOIUrl":null,"url":null,"abstract":"Non-heading Chinese cabbage (cabbage) is an essential green leafy vegetable, and bolting and flowering are necessary for reproduction. However, further research is needed to study the effect of photoperiod on the bolting and flowering of cabbage, particularly on the development of the stem. In this study, we performed phenotypic analysis and measured endogenous gibberellin levels in the cabbage. We carried out these experiments under four different photoperiodic treatments, 12 h (light)/12 h (dark), 14 h (light)/10 h (dark), 16 h (light)/8 h (dark), and 18 h (light)/6 h (dark). The results showed that the time of bolting and flowering gradually decreased with increasing light duration. The development of stems was optimal under the 16 h (light)/8 h (dark) photoperiod treatment, and the same result was obtained via cytological observation. In addition, the changes in the endogenous gibberellin3 (GA3) content under different photoperiodic treatments were consistent with the development of stems and peaked at 16 h (light)/8 h (dark). At the same time, qRT-PCR analysis showed that the relative expression of the key gibberellin synthase genes, BcGA3ox2 and BcGA20ox2, exhibited upregulation. When treated with exogenous GA3 and its synthesis inhibitor, paclobutrazol (PAC), exogenous gibberellins significantly promoted bolting; conversely, gibberellin inhibitors suppressed the bolting, flowering, and stem elongation of cabbage. Therefore, the photoperiod may regulate cabbage bolting by regulating endogenous GA3.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":"64 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae9121349","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Non-heading Chinese cabbage (cabbage) is an essential green leafy vegetable, and bolting and flowering are necessary for reproduction. However, further research is needed to study the effect of photoperiod on the bolting and flowering of cabbage, particularly on the development of the stem. In this study, we performed phenotypic analysis and measured endogenous gibberellin levels in the cabbage. We carried out these experiments under four different photoperiodic treatments, 12 h (light)/12 h (dark), 14 h (light)/10 h (dark), 16 h (light)/8 h (dark), and 18 h (light)/6 h (dark). The results showed that the time of bolting and flowering gradually decreased with increasing light duration. The development of stems was optimal under the 16 h (light)/8 h (dark) photoperiod treatment, and the same result was obtained via cytological observation. In addition, the changes in the endogenous gibberellin3 (GA3) content under different photoperiodic treatments were consistent with the development of stems and peaked at 16 h (light)/8 h (dark). At the same time, qRT-PCR analysis showed that the relative expression of the key gibberellin synthase genes, BcGA3ox2 and BcGA20ox2, exhibited upregulation. When treated with exogenous GA3 and its synthesis inhibitor, paclobutrazol (PAC), exogenous gibberellins significantly promoted bolting; conversely, gibberellin inhibitors suppressed the bolting, flowering, and stem elongation of cabbage. Therefore, the photoperiod may regulate cabbage bolting by regulating endogenous GA3.