Methane fermentation to methanol (biological gas-to-liquid process) using Methylotuvimicrobium buryatense 5GB1C

Aradhana Priyadarsini, Kaustubh Chandrakant Khaire, Lepakshi Barbora, Subhrangsu Sundar Maitra, Vijayanand Suryakant Moholkar
{"title":"Methane fermentation to methanol (biological gas-to-liquid process) using Methylotuvimicrobium buryatense 5GB1C","authors":"Aradhana Priyadarsini,&nbsp;Kaustubh Chandrakant Khaire,&nbsp;Lepakshi Barbora,&nbsp;Subhrangsu Sundar Maitra,&nbsp;Vijayanand Suryakant Moholkar","doi":"10.1002/amp2.10172","DOIUrl":null,"url":null,"abstract":"<p>Methanol is a potential alternate liquid transportation fuel for blending with gasoline. Biochemical conversion of methane to methanol is a green process for methanol production. This paper reports biochemical methanol production using type I γ-proteobacteria <i>Methylotuvimicrobium buryatense</i>, which has particular importance from the viewpoint of scalable biological gas to liquid processes for industrial application. A statistical design of experiments (at the serum bottle level) was used to optimize fermentation parameters. Enhancement in methanol accumulation was attempted using methanol dehydrogenase inhibitors. This was followed by a validation experiment run in a bioreactor at optimum conditions. At optimum conditions (pH = 7, phosphate concentration = 140 mM, temperature = 25°C) and optical density (600 nm) of 0.3, a methanol titer of 8.54 mM was achieved in 24 h (methane conversion = 20.8%). The addition of a methanol dehydrogenase inhibitor (0.5 mM Ethylenediaminetetraacetic acid) enhanced the methanol concentration to 10.37 mM. Experiments in a 3.7 L bioreactor using 1.68 bar headspace pressure and optical density (600 nm) of 0.1 yielded 23.7 mM methanol in 24 h (methane conversion = 47.8%). The methanol titers obtained using <i>M. buryatense</i> 5GB1C in 24 h fermentation are significantly higher than several previously reported methanotrophs. These results demonstrate the potential of <i>M. buryatense</i> 5GB1C for the biochemical synthesis of methanol.</p>","PeriodicalId":87290,"journal":{"name":"Journal of advanced manufacturing and processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/amp2.10172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced manufacturing and processing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/amp2.10172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol is a potential alternate liquid transportation fuel for blending with gasoline. Biochemical conversion of methane to methanol is a green process for methanol production. This paper reports biochemical methanol production using type I γ-proteobacteria Methylotuvimicrobium buryatense, which has particular importance from the viewpoint of scalable biological gas to liquid processes for industrial application. A statistical design of experiments (at the serum bottle level) was used to optimize fermentation parameters. Enhancement in methanol accumulation was attempted using methanol dehydrogenase inhibitors. This was followed by a validation experiment run in a bioreactor at optimum conditions. At optimum conditions (pH = 7, phosphate concentration = 140 mM, temperature = 25°C) and optical density (600 nm) of 0.3, a methanol titer of 8.54 mM was achieved in 24 h (methane conversion = 20.8%). The addition of a methanol dehydrogenase inhibitor (0.5 mM Ethylenediaminetetraacetic acid) enhanced the methanol concentration to 10.37 mM. Experiments in a 3.7 L bioreactor using 1.68 bar headspace pressure and optical density (600 nm) of 0.1 yielded 23.7 mM methanol in 24 h (methane conversion = 47.8%). The methanol titers obtained using M. buryatense 5GB1C in 24 h fermentation are significantly higher than several previously reported methanotrophs. These results demonstrate the potential of M. buryatense 5GB1C for the biochemical synthesis of methanol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Methylotuvimicrobium buryatense5GB1C 将甲烷发酵成甲醇(生物气变液工艺
甲醇是一种潜在的替代液体运输燃料,可与汽油混合使用。将甲烷生化转化为甲醇是一种生产甲醇的绿色工艺。本文报告了利用Ⅰ型γ-蛋白细菌埋藏甲烷微生物(Methylotuvimicrobium buryatense)生化生产甲醇的情况,这对于工业应用中可扩展的生物气变液过程具有特别重要的意义。采用统计实验设计(血清瓶水平)来优化发酵参数。使用甲醇脱氢酶抑制剂尝试提高甲醇积累。随后在生物反应器中以最佳条件进行了验证实验。在最佳条件下(pH = 7,磷酸盐浓度 = 140 mM,温度 = 25°C),光密度(600 nm)为 0.3,24 小时内甲醇滴度达到 8.54 mM(甲烷转化率 = 20.8%)。加入甲醇脱氢酶抑制剂(0.5 mM 乙二胺四乙酸)后,甲醇浓度增至 10.37 mM。在 3.7 升生物反应器中进行实验,顶空压力为 1.68 巴,光密度(600 纳米)为 0.1,24 小时后甲醇浓度为 23.7 毫摩尔(甲烷转化率 = 47.8%)。在 24 小时的发酵过程中,使用埋地芽孢杆菌 5GB1C 获得的甲醇滴度明显高于之前报道的几种甲烷营养体。这些结果证明了掩唇菌 5GB1C 生化合成甲醇的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Two scale-down tools for the optimization of perfusion bioreactors for the manufacture of biopharmaceuticals CFD modeling and numerical simulation of an industrial adsorption process Enhancing decanter centrifuge process design with data-driven material parameters in multi-compartment modeling Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1