{"title":"Use of a spatially distributed in-phase antenna to increase the noise immunity of signal reception","authors":"G. V. Kulikov, Yuriy Polevoda, M. Kostin","doi":"10.32362/2500-316x-2023-11-6-39-46","DOIUrl":null,"url":null,"abstract":"Objectives. Radio-technical information transmission systems are widely used in various sectors of our life, not only for telecommunications and associated domestic needs, but also for the functioning of various special services, such as emergency response units, which increasingly use robotic complexes in the course of their work. In the event of an emergency, robot devices can be used to get in under rubble, in concrete pipes or other municipal facilities, which typically result in a sharp deterioration of the necessary conditions for the propagation of radio waves. In this regard, the problem of ensuring reliable communication with the robotic complex becomes rather acute. The aim of the present work is to reduce the effect of multipath propagation of radio waves in the communication channel under complex interference conditions.Methods. The methods of statistical radio engineering and mathematical modeling are used according to optimal signal reception theory.Results. The presented model for a multi-element, spatially-distributed, in-phase receiving antenna of various configurations, featuring an electronically adjustable radiation pattern, is designed to ameliorate the multipath nature of signal propagation. A simulation of a multipath communication channel was carried out in the presence of one main and three reflected beams of radio wave propagation, as well as with harmonic interference at two angles of its arrival and different frequency detuning relative to the frequency of the useful signal. The probability of a bit error when receiving discrete information using the proposed antenna is estimated.Conclusions. The proposed signal processing algorithm on the receiving side can be used to partially compensate for the influence of the multipath effect. As a result, the noise immunity of information reception in comparison with reception on an omnidirectional antenna with one antenna element increases: for a bit error probability of 10−3, the energy gain ranges from 2 dB for two beams to 7–10 dB for three or four beams. In the presence of concentrated harmonic interference in the radio channel, its simultaneous spatial (by the antenna) and spectral (by the demodulator) filtering is also observed, the effectiveness of which depends on the direction of arrival and the frequency detuning of the interference, which also leads to a significant decrease in the error probability.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"9 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2500-316x-2023-11-6-39-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives. Radio-technical information transmission systems are widely used in various sectors of our life, not only for telecommunications and associated domestic needs, but also for the functioning of various special services, such as emergency response units, which increasingly use robotic complexes in the course of their work. In the event of an emergency, robot devices can be used to get in under rubble, in concrete pipes or other municipal facilities, which typically result in a sharp deterioration of the necessary conditions for the propagation of radio waves. In this regard, the problem of ensuring reliable communication with the robotic complex becomes rather acute. The aim of the present work is to reduce the effect of multipath propagation of radio waves in the communication channel under complex interference conditions.Methods. The methods of statistical radio engineering and mathematical modeling are used according to optimal signal reception theory.Results. The presented model for a multi-element, spatially-distributed, in-phase receiving antenna of various configurations, featuring an electronically adjustable radiation pattern, is designed to ameliorate the multipath nature of signal propagation. A simulation of a multipath communication channel was carried out in the presence of one main and three reflected beams of radio wave propagation, as well as with harmonic interference at two angles of its arrival and different frequency detuning relative to the frequency of the useful signal. The probability of a bit error when receiving discrete information using the proposed antenna is estimated.Conclusions. The proposed signal processing algorithm on the receiving side can be used to partially compensate for the influence of the multipath effect. As a result, the noise immunity of information reception in comparison with reception on an omnidirectional antenna with one antenna element increases: for a bit error probability of 10−3, the energy gain ranges from 2 dB for two beams to 7–10 dB for three or four beams. In the presence of concentrated harmonic interference in the radio channel, its simultaneous spatial (by the antenna) and spectral (by the demodulator) filtering is also observed, the effectiveness of which depends on the direction of arrival and the frequency detuning of the interference, which also leads to a significant decrease in the error probability.