{"title":"MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELETS COMPOSITE RESIN FABRICATED BY 3D PRINTING TECHNIQUE","authors":"Chanwit Pa-art, W. Nuansing","doi":"10.55766/sujst-2023-05-e03020","DOIUrl":null,"url":null,"abstract":"Vat photopolymerization 3D printing, including LCD 3D printing, is a versatile method for the fabrication of complex structures with numerous applications. The aim of this study was to investigate the potential of graphene nanoplatelets (GNP) as an additive for improving the mechanical properties of carbon-filled composite resin for LCD 3D printing. Tensile testing was conducted on the 3D-printed samples using the ASTM D638 type V standard model. The results indicated that adding 0.1% w/w GNP with 20 sec of exposure time increased the elastic modulus of the specimen from 7.31±1.02 MPa to 9.38±0.37 MPa for x-orientation (horizontal) and from 7.62±0.93 MPa to 9.58±0.61 MPa for y-orientation (vertical). Furthermore, the maximum tensile strength increased from 3.87±1.13 MPa to 5.28±0.73 MPa for y-orientation and from 4.06±0.92 MPa to 5.49±0.49 MPa for x-orientation. These results demonstrate the efficacy of GNP as an effective additive for enhancing the mechanical properties of carbon-based composite resin in LCD 3D printing.","PeriodicalId":43478,"journal":{"name":"Suranaree Journal of Science and Technology","volume":"107 2","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suranaree Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55766/sujst-2023-05-e03020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vat photopolymerization 3D printing, including LCD 3D printing, is a versatile method for the fabrication of complex structures with numerous applications. The aim of this study was to investigate the potential of graphene nanoplatelets (GNP) as an additive for improving the mechanical properties of carbon-filled composite resin for LCD 3D printing. Tensile testing was conducted on the 3D-printed samples using the ASTM D638 type V standard model. The results indicated that adding 0.1% w/w GNP with 20 sec of exposure time increased the elastic modulus of the specimen from 7.31±1.02 MPa to 9.38±0.37 MPa for x-orientation (horizontal) and from 7.62±0.93 MPa to 9.58±0.61 MPa for y-orientation (vertical). Furthermore, the maximum tensile strength increased from 3.87±1.13 MPa to 5.28±0.73 MPa for y-orientation and from 4.06±0.92 MPa to 5.49±0.49 MPa for x-orientation. These results demonstrate the efficacy of GNP as an effective additive for enhancing the mechanical properties of carbon-based composite resin in LCD 3D printing.