Network Malware Detection Using Deep Learning Network Analysis

Peng Xiao
{"title":"Network Malware Detection Using Deep Learning Network Analysis","authors":"Peng Xiao","doi":"10.13052/jcsm2245-1439.1312","DOIUrl":null,"url":null,"abstract":"Malware, short for malicious software, is designed for harmful purposes and threatens network security because it can propagate without human interaction by exploiting user’s vulnerabilities and carelessness. Having your system regularly scanned for malicious software is essential for keeping hackers at bay and avoiding the disclosure of sensitive data. The major drawbacks are the rapid creation of new malware variants, and it may become difficult to detect existing threats. With the ever-increasing volume of Android malware, the sophistication with which it can hide, and the potentially enormous value of data assets stored on Android devices, detecting or classifying Android malware is a big data problem. Security researchers have developed various malware detection and prevention programs for servers, gateways, user workstations, and mobile devices. Some offer centralized monitoring for malware detection software deployed on many systems or computers. The purpose of this essay is to critically examine the research that has been done specifically on malware detection. This paper proposes the Anti-Virus Software Detection for Malware with Deep Learning Network (AVSD-MDLN) framework to explore the possible threats. The two methods help in finding the threats. Dynamic Analysis for the Detection of Spyware (DA-DS) framework is framed to detect malicious malware, while the other is for classifying Android malware which is helped out through the Category in an Ensemble (CE) method. Prior malware detection methods are compared with the results of the proposed method. According to the research findings, the proposed approach achieves a higher projected time (0.5 sec) and detection accuracy (97.47%) than the existing situation machine learning and deep learning methodologies. Performance, correlation coefficient, and recall rate all improved in the suggested framework. Likewise, the negative rate (MPR) and the positive rate (PPR) also improved.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"147 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Malware, short for malicious software, is designed for harmful purposes and threatens network security because it can propagate without human interaction by exploiting user’s vulnerabilities and carelessness. Having your system regularly scanned for malicious software is essential for keeping hackers at bay and avoiding the disclosure of sensitive data. The major drawbacks are the rapid creation of new malware variants, and it may become difficult to detect existing threats. With the ever-increasing volume of Android malware, the sophistication with which it can hide, and the potentially enormous value of data assets stored on Android devices, detecting or classifying Android malware is a big data problem. Security researchers have developed various malware detection and prevention programs for servers, gateways, user workstations, and mobile devices. Some offer centralized monitoring for malware detection software deployed on many systems or computers. The purpose of this essay is to critically examine the research that has been done specifically on malware detection. This paper proposes the Anti-Virus Software Detection for Malware with Deep Learning Network (AVSD-MDLN) framework to explore the possible threats. The two methods help in finding the threats. Dynamic Analysis for the Detection of Spyware (DA-DS) framework is framed to detect malicious malware, while the other is for classifying Android malware which is helped out through the Category in an Ensemble (CE) method. Prior malware detection methods are compared with the results of the proposed method. According to the research findings, the proposed approach achieves a higher projected time (0.5 sec) and detection accuracy (97.47%) than the existing situation machine learning and deep learning methodologies. Performance, correlation coefficient, and recall rate all improved in the suggested framework. Likewise, the negative rate (MPR) and the positive rate (PPR) also improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习网络分析检测网络恶意软件
恶意软件是恶意软件的简称,其设计目的是为了达到有害的目的,并威胁到网络安全,因为它可以利用用户的漏洞和粗心大意,在没有人际互动的情况下传播。定期扫描系统中的恶意软件对于防止黑客入侵和避免敏感数据泄露至关重要。其主要缺点是新的恶意软件变种会迅速产生,而且可能难以检测到现有的威胁。随着安卓恶意软件数量的不断增加、其隐藏的复杂程度以及存储在安卓设备上的数据资产的潜在巨大价值,对安卓恶意软件进行检测或分类是一个大数据问题。安全研究人员为服务器、网关、用户工作站和移动设备开发了各种恶意软件检测和预防程序。有些程序为部署在许多系统或计算机上的恶意软件检测软件提供集中监控。本文旨在批判性地审视专门针对恶意软件检测所做的研究。本文提出了利用深度学习网络检测恶意软件的反病毒软件检测(AVSD-MDLN)框架,以探索可能的威胁。这两种方法有助于发现威胁。动态分析检测间谍软件(DA-DS)框架用于检测恶意软件,而另一种则用于对安卓恶意软件进行分类,该分类通过集合分类(CE)方法来实现。先前的恶意软件检测方法与所提出方法的结果进行了比较。研究结果表明,与现有的机器学习和深度学习方法相比,提议的方法实现了更高的预测时间(0.5 秒)和检测准确率(97.47%)。在建议的框架中,性能、相关系数和召回率都有所提高。同样,阴性率(MPR)和阳性率(PPR)也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
期刊最新文献
Network Malware Detection Using Deep Learning Network Analysis An Efficient Intrusion Detection and Prevention System for DDOS Attack in WSN Using SS-LSACNN and TCSLR Update Algorithm of Secure Computer Database Based on Deep Belief Network Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1