Analysis of the Impact of Structural Parameter Changes on the Overall Aerodynamic Characteristics of Ducted UAVs

IF 4.4 2区 地球科学 Q1 REMOTE SENSING Drones Pub Date : 2023-12-11 DOI:10.3390/drones7120702
Huarui Xv, Lei Zhao, Mingjian Wu, Kun Liu, Hongyue Zhang, Zhilin Wu
{"title":"Analysis of the Impact of Structural Parameter Changes on the Overall Aerodynamic Characteristics of Ducted UAVs","authors":"Huarui Xv, Lei Zhao, Mingjian Wu, Kun Liu, Hongyue Zhang, Zhilin Wu","doi":"10.3390/drones7120702","DOIUrl":null,"url":null,"abstract":"Ducted UAVs have attracted much attention because the duct structure can reduce the propeller tip vortices and thus increase the effective lift area of the lower propeller. This paper investigates the effects of parameters on the aerodynamic characteristics of ducted UAVs, such as co-axial twin propeller configuration and duct structure. The aerodynamic characteristics of the UAV were analyzed using CFD methods, while the impact sensitivity analysis of the simulation data was sorted using the orthogonal test method. The results indicate that, while maintaining overall strength, increasing the propeller spacing by about 0.055 times the duct chord length can increase the lift of the upper propeller by approximately 1.3% faster. Reducing the distance between the propeller and the top surface of the duct by about 0.5 times the duct chord length can increase the lift of the lower propeller by approximately 7.7%. Increasing the chord length of the duct cross-section by about 35.3% can simultaneously make the structure of the duct and the total lift of the drone faster by approximately 150.6% and 15.7%, respectively. This research provides valuable guidance and reference for the subsequent overall design of ducted UAVs.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"18 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/drones7120702","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Ducted UAVs have attracted much attention because the duct structure can reduce the propeller tip vortices and thus increase the effective lift area of the lower propeller. This paper investigates the effects of parameters on the aerodynamic characteristics of ducted UAVs, such as co-axial twin propeller configuration and duct structure. The aerodynamic characteristics of the UAV were analyzed using CFD methods, while the impact sensitivity analysis of the simulation data was sorted using the orthogonal test method. The results indicate that, while maintaining overall strength, increasing the propeller spacing by about 0.055 times the duct chord length can increase the lift of the upper propeller by approximately 1.3% faster. Reducing the distance between the propeller and the top surface of the duct by about 0.5 times the duct chord length can increase the lift of the lower propeller by approximately 7.7%. Increasing the chord length of the duct cross-section by about 35.3% can simultaneously make the structure of the duct and the total lift of the drone faster by approximately 150.6% and 15.7%, respectively. This research provides valuable guidance and reference for the subsequent overall design of ducted UAVs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构参数变化对风道式无人机整体气动特性的影响分析
导管式无人机备受关注,因为导管结构可以减少螺旋桨翼尖涡流,从而增加下部螺旋桨的有效升力面积。本文研究了同轴双螺旋桨配置和风道结构等参数对风道式无人机气动特性的影响。采用 CFD 方法分析了无人机的气动特性,同时采用正交试验方法对模拟数据进行了冲击敏感性分析。结果表明,在保持整体强度的前提下,将螺旋桨间距增加约 0.055 倍风道弦长,可使上部螺旋桨的升力提高约 1.3%。将螺旋桨与风道顶面之间的距离减少约 0.5 倍风道弦长,可使下部螺旋桨的升力增加约 7.7%。将风道横截面弦长增加约 35.3%,可同时使风道结构和无人机总升力分别加快约 150.6% 和 15.7%。这项研究为后续风道式无人机的整体设计提供了宝贵的指导和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
期刊最新文献
Firefighting Drone Configuration and Scheduling for Wildfire Based on Loss Estimation and Minimization Wind Tunnel Balance Measurements of Bioinspired Tails for a Fixed Wing MAV Three-Dimensional Indoor Positioning Scheme for Drone with Fingerprint-Based Deep-Learning Classifier Blockchain-Enabled Infection Sample Collection System Using Two-Echelon Drone-Assisted Mechanism Joint Trajectory Design and Resource Optimization in UAV-Assisted Caching-Enabled Networks with Finite Blocklength Transmissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1